进化策略-python实现

ESIndividual.py

 1 import numpy as np
 2 import ObjFunction
 3 
 4 
 5 class ESIndividual:
 6 
 7     '''
 8     individual of evolutionary strategy
 9     '''
10 
11     def __init__(self,  vardim, bound):
12         '''
13         vardim: dimension of variables
14         bound: boundaries of variables
15         '''
16         self.vardim = vardim
17         self.bound = bound
18         self.fitness = 0.
19         self.trials = 0
20 
21     def generate(self):
22         '''
23         generate a random chromsome for evolutionary strategy
24         '''
25         len = self.vardim
26         rnd = np.random.random(size=len)
27         self.chrom = np.zeros(len)
28         for i in xrange(0, len):
29             self.chrom[i] = self.bound[0, i] + \
30                 (self.bound[1, i] - self.bound[0, i]) * rnd[i]
31 
32     def calculateFitness(self):
33         '''
34         calculate the fitness of the chromsome
35         '''
36         self.fitness = ObjFunction.GrieFunc(
37             self.vardim, self.chrom, self.bound)

ES.py

  1 import numpy as np
  2 from ESIndividual import ESIndividual
  3 import random
  4 import copy
  5 import matplotlib.pyplot as plt
  6 
  7 
  8 class EvolutionaryStrategy:
  9 
 10     '''
 11     the class for evolutionary strategy
 12     '''
 13 
 14     def __init__(self, sizepop, vardim, bound, MAXGEN, params):
 15         '''
 16         sizepop: population sizepop
 17         vardim: dimension of variables
 18         bound: boundaries of variables
 19         MAXGEN: termination condition
 20         params: algorithm required parameters, it is a list which is consisting of[delta_max, delta_min]
 21         '''
 22         self.sizepop = sizepop
 23         self.vardim = vardim
 24         self.bound = bound
 25         self.MAXGEN = MAXGEN
 26         self.params = params
 27         self.population = []
 28         self.fitness = np.zeros(self.sizepop)
 29         self.trace = np.zeros((self.MAXGEN, 2))
 30 
 31     def initialize(self):
 32         '''
 33         initialize the population of es
 34         '''
 35         for i in xrange(0, self.sizepop):
 36             ind = ESIndividual(self.vardim, self.bound)
 37             ind.generate()
 38             self.population.append(ind)
 39 
 40     def evaluation(self):
 41         '''
 42         evaluation the fitness of the population
 43         '''
 44         for i in xrange(0, self.sizepop):
 45             self.population[i].calculateFitness()
 46             self.fitness[i] = self.population[i].fitness
 47 
 48     def solve(self):
 49         '''
 50         the evolution process of the evolutionary strategy
 51         '''
 52         self.t = 0
 53         self.initialize()
 54         self.evaluation()
 55         bestIndex = np.argmax(self.fitness)
 56         self.best = copy.deepcopy(self.population[bestIndex])
 57         while self.t < self.MAXGEN:
 58             self.t += 1
 59             tmpPop = self.mutation()
 60             self.selection(tmpPop)
 61             best = np.max(self.fitness)
 62             bestIndex = np.argmax(self.fitness)
 63             if best > self.best.fitness:
 64                 self.best = copy.deepcopy(self.population[bestIndex])
 65 
 66             self.avefitness = np.mean(self.fitness)
 67             self.trace[self.t - 1, 0] = \
 68                 (1 - self.best.fitness) / self.best.fitness
 69             self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
 70             print("Generation %d: optimal function value is: %f; average function value is %f" % (
 71                 self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
 72         print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
 73         print "Optimal solution is:"
 74         print self.best.chrom
 75         self.printResult()
 76 
 77     def mutation(self):
 78         '''
 79         mutate the population by a random normal distribution
 80         '''
 81         tmpPop = []
 82         for i in xrange(0, self.sizepop):
 83             ind = copy.deepcopy(self.population[i])
 84             delta = self.params[0] + self.t * \
 85                 (self.params[1] - self.params[0]) / self.MAXGEN
 86             ind.chrom += np.random.normal(0.0, delta, self.vardim)
 87             for k in xrange(0, self.vardim):
 88                 if ind.chrom[k] < self.bound[0, k]:
 89                     ind.chrom[k] = self.bound[0, k]
 90                 if ind.chrom[k] > self.bound[1, k]:
 91                     ind.chrom[k] = self.bound[1, k]
 92             ind.calculateFitness()
 93             tmpPop.append(ind)
 94         return tmpPop
 95 
 96     def selection(self, tmpPop):
 97         '''
 98         update the population
 99         '''
100         for i in xrange(0, self.sizepop):
101             if self.fitness[i] < tmpPop[i].fitness:
102                 self.population[i] = tmpPop[i]
103                 self.fitness[i] = tmpPop[i].fitness
104 
105     def printResult(self):
106         '''
107         plot the result of evolutionary strategy
108         '''
109         x = np.arange(0, self.MAXGEN)
110         y1 = self.trace[:, 0]
111         y2 = self.trace[:, 1]
112         plt.plot(x, y1, 'r', label='optimal value')
113         plt.plot(x, y2, 'g', label='average value')
114         plt.xlabel("Iteration")
115         plt.ylabel("function value")
116         plt.title("Evolutionary strategy for function optimization")
117         plt.legend()
118         plt.show()

运行程序:

1 if __name__ == "__main__":
2 
3     bound = np.tile([[-600], [600]], 25)    
4     es = ES(60, 25, bound, 1000, [10, 1])
5     es.solve()

 

ObjFunction见简单遗传算法-python实现

posted on 2015-10-09 22:18  Alex Yu  阅读(3112)  评论(0编辑  收藏  举报

导航