蝙蝠算法-python实现

BAIndividual.py

 1 import numpy as np
 2 import ObjFunction
 3 
 4 
 5 class BAIndividual:
 6 
 7     '''
 8     individual of bat algorithm
 9     '''
10 
11     def __init__(self,  vardim, bound):
12         '''
13         vardim: dimension of variables
14         bound: boundaries of variables
15         '''
16         self.vardim = vardim
17         self.bound = bound
18         self.fitness = 0.
19         self.trials = 0
20 
21     def generate(self):
22         '''
23         generate a random chromsome for bat algorithm
24         '''
25         len = self.vardim
26         rnd = np.random.random(size=len)
27         self.chrom = np.zeros(len)
28         self.velocity = np.random.random(size=len)
29         for i in xrange(0, len):
30             self.chrom[i] = self.bound[0, i] + \
31                 (self.bound[1, i] - self.bound[0, i]) * rnd[i]
32 
33     def calculateFitness(self):
34         '''
35         calculate the fitness of the chromsome
36         '''
37         self.fitness = ObjFunction.GrieFunc(
38             self.vardim, self.chrom, self.bound)

BA.py

  1 import numpy as np
  2 from BAIndividual import BAIndividual
  3 import random
  4 import copy
  5 import matplotlib.pyplot as plt
  6 
  7 
  8 class BatAlgorithm:
  9 
 10     '''
 11     the class for bat algorithm
 12     '''
 13 
 14     def __init__(self, sizepop, vardim, bound, MAXGEN, params):
 15         '''
 16         sizepop: population sizepop
 17         vardim: dimension of variables
 18         bound: boundaries of variables
 19         MAXGEN: termination condition
 20         params: algorithm required parameters, it is a list which is consisting of[fmax, fmin, Amax, Amin, alpha, gamma]
 21         '''
 22         self.sizepop = sizepop
 23         self.vardim = vardim
 24         self.bound = bound
 25         self.MAXGEN = MAXGEN
 26         self.params = params
 27         self.population = []
 28         self.fitness = np.zeros(self.sizepop)
 29         self.freq = np.zeros(self.sizepop)
 30         self.loudness = np.zeros(self.sizepop)
 31         self.emissionrate = np.zeros(self.sizepop)
 32         self.initEmissionrate = np.zeros(self.sizepop)
 33         self.trace = np.zeros((self.MAXGEN, 2))
 34 
 35     def initialize(self):
 36         '''
 37         initialize the population of ba
 38         '''
 39         for i in xrange(0, self.sizepop):
 40             ind = BAIndividual(self.vardim, self.bound)
 41             ind.generate()
 42             self.population.append(ind)
 43             self.freq[i] = self.params[1] + \
 44                 (self.params[0] - self.params[1]) * np.random.random(1)
 45             self.loudness[i] = self.params[3] + \
 46                 (self.params[2] - self.params[3]) * np.random.random(1)
 47             self.initEmissionrate[i] = np.random.random(1)
 48             self.emissionrate[i] = self.initEmissionrate[i]
 49 
 50     def evaluation(self):
 51         '''
 52         evaluation the fitness of the population
 53         '''
 54         for i in xrange(0, self.sizepop):
 55             self.population[i].calculateFitness()
 56             self.fitness[i] = self.population[i].fitness
 57 
 58     def solve(self):
 59         '''
 60         the evolution process of the bat algorithm
 61         '''
 62         self.t = 0
 63         self.initialize()
 64         self.evaluation()
 65         bestIndex = np.argmax(self.fitness)
 66         self.best = copy.deepcopy(self.population[bestIndex])
 67         while self.t < self.MAXGEN:
 68             self.t += 1
 69             self.update()
 70             # idx = self.select()
 71             self.evaluation()
 72             best = np.max(self.fitness)
 73             bestIndex = np.argmax(self.fitness)
 74             if best > self.best.fitness:
 75                 self.best = copy.deepcopy(self.population[bestIndex])
 76 
 77             self.avefitness = np.mean(self.fitness)
 78             self.trace[self.t - 1, 0] = \
 79                 (1 - self.best.fitness) / self.best.fitness
 80             self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
 81             print("Generation %d: optimal function value is: %f; average function value is %f" % (
 82                 self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
 83         print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
 84         print "Optimal solution is:"
 85         print self.best.chrom
 86         self.printResult()
 87 
 88     def update(self):
 89         '''
 90         update the population
 91         '''
 92         for i in xrange(0, self.sizepop):
 93             self.freq[i] = self.params[1] + \
 94                 (self.params[0] - self.params[1]) * np.random.random(1)
 95             self.population[
 96                 i].velocity += (self.best.chrom - self.population[i].chrom) * self.freq[i]
 97 
 98             self.population[i].chrom += self.population[i].velocity
 99             for k in xrange(0, self.vardim):
100                 if self.population[i].chrom[k] < self.bound[0, k]:
101                     self.population[i].chrom[k] = self.bound[0, k]
102                 if self.population[i].chrom[k] > self.bound[1, k]:
103                     self.population[i].chrom[k] = self.bound[1, k]
104             rnd = np.random.random(1)
105             A = np.mean(self.emissionrate)
106             tmpInd = copy.deepcopy(self.best)
107             if rnd > self.emissionrate[i]:
108                 tmpInd.chrom += np.random.uniform(low=-1,
109                                                   high=1.0, size=self.vardim) * A
110                 for k in xrange(0, self.vardim):
111                     if tmpInd.chrom[k] < self.bound[0, k]:
112                         tmpInd.chrom[k] = self.bound[0, k]
113                     if tmpInd.chrom[k] > self.bound[1, k]:
114                         tmpInd.chrom[k] = self.bound[1, k]
115             tmpInd.calculateFitness()
116             if tmpInd.fitness > self.best.fitness and random.random() < self.loudness[i]:
117                 self.population[i] = tmpInd
118                 self.loudness[i] *= self.params[4]
119                 self.emissionrate[i] = self.initEmissionrate[
120                     i] * (1 - np.exp(self.params[5] * self.t))
121             if tmpInd.fitness > self.best.fitness:
122                 self.best = copy.deepcopy(tmpInd)
123 
124     def selectOne(self):
125         '''
126         select one individual from the population
127         '''
128         totalFitness = np.sum(self.fitness)
129         accuFitness = np.zeros(self.sizepop)
130 
131         sum1 = 0.
132         for i in xrange(0, self.sizepop):
133             accuFitness[i] = sum1 + self.fitness[i] / totalFitness
134             sum1 = accuFitness[i]
135 
136         r = random.random()
137         idx = 0
138         for j in xrange(0, self.sizepop - 1):
139             if j == 0 and r < accuFitness[j]:
140                 idx = 0
141                 break
142             elif r >= accuFitness[j] and r < accuFitness[j + 1]:
143                 idx = j + 1
144                 break
145         return idx
146 
147     def printResult(self):
148         '''
149         plot the result of bat algorithm
150         '''
151         x = np.arange(0, self.MAXGEN)
152         y1 = self.trace[:, 0]
153         y2 = self.trace[:, 1]
154         plt.plot(x, y1, 'r', label='optimal value')
155         plt.plot(x, y2, 'g', label='average value')
156         plt.xlabel("Iteration")
157         plt.ylabel("function value")
158         plt.title("Bat algorithm for function optimization")
159         plt.legend()
160         plt.show()

 运行程序:

1 if __name__ == "__main__":
2 
3     bound = np.tile([[-600], [600]], 25)  
4     ba = BA(60, 25, bound, 1000, [1, 0, 1, 0, 0.8, 0.9])
5     ba.solve()

 

ObjFunction见简单遗传算法-python实现

posted on 2015-10-06 22:37  Alex Yu  阅读(5113)  评论(4编辑  收藏  举报

导航