人工蜂群算法-python实现

ABSIndividual.py

 1 import numpy as np
 2 import ObjFunction
 3 
 4 
 5 class ABSIndividual:
 6 
 7     '''
 8     individual of artificial bee swarm algorithm
 9     '''
10 
11     def __init__(self,  vardim, bound):
12         '''
13         vardim: dimension of variables
14         bound: boundaries of variables
15         '''
16         self.vardim = vardim
17         self.bound = bound
18         self.fitness = 0.
19         self.trials = 0
20 
21     def generate(self):
22         '''
23         generate a random chromsome for artificial bee swarm algorithm
24         '''
25         len = self.vardim
26         rnd = np.random.random(size=len)
27         self.chrom = np.zeros(len)
28         for i in xrange(0, len):
29             self.chrom[i] = self.bound[0, i] + \
30                 (self.bound[1, i] - self.bound[0, i]) * rnd[i]
31 
32     def calculateFitness(self):
33         '''
34         calculate the fitness of the chromsome
35         '''
36         self.fitness = ObjFunction.GrieFunc(
37             self.vardim, self.chrom, self.bound)

ABS.py

  1 import numpy as np
  2 from ABSIndividual import ABSIndividual
  3 import random
  4 import copy
  5 import matplotlib.pyplot as plt
  6 
  7 
  8 class ArtificialBeeSwarm:
  9 
 10     '''
 11     the class for artificial bee swarm algorithm
 12     '''
 13 
 14     def __init__(self, sizepop, vardim, bound, MAXGEN, params):
 15         '''
 16         sizepop: population sizepop
 17         vardim: dimension of variables
 18         bound: boundaries of variables
 19         MAXGEN: termination condition
 20         params: algorithm required parameters, it is a list which is consisting of[trailLimit, C]
 21         '''
 22         self.sizepop = sizepop
 23         self.vardim = vardim
 24         self.bound = bound
 25         self.foodSource = self.sizepop / 2
 26         self.MAXGEN = MAXGEN
 27         self.params = params
 28         self.population = []
 29         self.fitness = np.zeros((self.sizepop, 1))
 30         self.trace = np.zeros((self.MAXGEN, 2))
 31 
 32     def initialize(self):
 33         '''
 34         initialize the population of abs
 35         '''
 36         for i in xrange(0, self.foodSource):
 37             ind = ABSIndividual(self.vardim, self.bound)
 38             ind.generate()
 39             self.population.append(ind)
 40 
 41     def evaluation(self):
 42         '''
 43         evaluation the fitness of the population
 44         '''
 45         for i in xrange(0, self.foodSource):
 46             self.population[i].calculateFitness()
 47             self.fitness[i] = self.population[i].fitness
 48 
 49     def employedBeePhase(self):
 50         '''
 51         employed bee phase
 52         '''
 53         for i in xrange(0, self.foodSource):
 54             k = np.random.random_integers(0, self.vardim - 1)
 55             j = np.random.random_integers(0, self.foodSource - 1)
 56             while j == i:
 57                 j = np.random.random_integers(0, self.foodSource - 1)
 58             vi = copy.deepcopy(self.population[i])
 59             # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
 60             #     vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
 61             # for k in xrange(0, self.vardim):
 62             #     if vi.chrom[k] < self.bound[0, k]:
 63             #         vi.chrom[k] = self.bound[0, k]
 64             #     if vi.chrom[k] > self.bound[1, k]:
 65             #         vi.chrom[k] = self.bound[1, k]
 66             vi.chrom[
 67                 k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
 68             if vi.chrom[k] < self.bound[0, k]:
 69                 vi.chrom[k] = self.bound[0, k]
 70             if vi.chrom[k] > self.bound[1, k]:
 71                 vi.chrom[k] = self.bound[1, k]
 72             vi.calculateFitness()
 73             if vi.fitness > self.fitness[fi]:
 74                 self.population[fi] = vi
 75                 self.fitness[fi] = vi.fitness
 76                 if vi.fitness > self.best.fitness:
 77                     self.best = vi
 78             vi.calculateFitness()
 79             if vi.fitness > self.fitness[i]:
 80                 self.population[i] = vi
 81                 self.fitness[i] = vi.fitness
 82                 if vi.fitness > self.best.fitness:
 83                     self.best = vi
 84             else:
 85                 self.population[i].trials += 1
 86 
 87     def onlookerBeePhase(self):
 88         '''
 89         onlooker bee phase
 90         '''
 91         accuFitness = np.zeros((self.foodSource, 1))
 92         maxFitness = np.max(self.fitness)
 93 
 94         for i in xrange(0, self.foodSource):
 95             accuFitness[i] = 0.9 * self.fitness[i] / maxFitness + 0.1
 96 
 97         for i in xrange(0, self.foodSource):
 98             for fi in xrange(0, self.foodSource):
 99                 r = random.random()
100                 if r < accuFitness[i]:
101                     k = np.random.random_integers(0, self.vardim - 1)
102                     j = np.random.random_integers(0, self.foodSource - 1)
103                     while j == fi:
104                         j = np.random.random_integers(0, self.foodSource - 1)
105                     vi = copy.deepcopy(self.population[fi])
106                     # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
107                     #     vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
108                     # for k in xrange(0, self.vardim):
109                     #     if vi.chrom[k] < self.bound[0, k]:
110                     #         vi.chrom[k] = self.bound[0, k]
111                     #     if vi.chrom[k] > self.bound[1, k]:
112                     #         vi.chrom[k] = self.bound[1, k]
113                     vi.chrom[
114                         k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
115                     if vi.chrom[k] < self.bound[0, k]:
116                         vi.chrom[k] = self.bound[0, k]
117                     if vi.chrom[k] > self.bound[1, k]:
118                         vi.chrom[k] = self.bound[1, k]
119                     vi.calculateFitness()
120                     if vi.fitness > self.fitness[fi]:
121                         self.population[fi] = vi
122                         self.fitness[fi] = vi.fitness
123                         if vi.fitness > self.best.fitness:
124                             self.best = vi
125                     else:
126                         self.population[fi].trials += 1
127                     break
128 
129     def scoutBeePhase(self):
130         '''
131         scout bee phase
132         '''
133         for i in xrange(0, self.foodSource):
134             if self.population[i].trials > self.params[0]:
135                 self.population[i].generate()
136                 self.population[i].trials = 0
137                 self.population[i].calculateFitness()
138                 self.fitness[i] = self.population[i].fitness
139 
140     def solve(self):
141         '''
142         the evolution process of the abs algorithm
143         '''
144         self.t = 0
145         self.initialize()
146         self.evaluation()
147         best = np.max(self.fitness)
148         bestIndex = np.argmax(self.fitness)
149         self.best = copy.deepcopy(self.population[bestIndex])
150         self.avefitness = np.mean(self.fitness)
151         self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
152         self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
153         print("Generation %d: optimal function value is: %f; average function value is %f" % (
154             self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
155         while self.t < self.MAXGEN - 1:
156             self.t += 1
157             self.employedBeePhase()
158             self.onlookerBeePhase()
159             self.scoutBeePhase()
160             best = np.max(self.fitness)
161             bestIndex = np.argmax(self.fitness)
162             if best > self.best.fitness:
163                 self.best = copy.deepcopy(self.population[bestIndex])
164             self.avefitness = np.mean(self.fitness)
165             self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
166             self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
167             print("Generation %d: optimal function value is: %f; average function value is %f" % (
168                 self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
169         print("Optimal function value is: %f; " % self.trace[self.t, 0])
170         print "Optimal solution is:"
171         print self.best.chrom
172         self.printResult()
173 
174     def printResult(self):
175         '''
176         plot the result of abs algorithm
177         '''
178         x = np.arange(0, self.MAXGEN)
179         y1 = self.trace[:, 0]
180         y2 = self.trace[:, 1]
181         plt.plot(x, y1, 'r', label='optimal value')
182         plt.plot(x, y2, 'g', label='average value')
183         plt.xlabel("Iteration")
184         plt.ylabel("function value")
185         plt.title("Artificial Bee Swarm algorithm for function optimization")
186         plt.legend()
187         plt.show()

 运行程序:

1 if __name__ == "__main__":
2 
3     bound = np.tile([[-600], [600]], 25)
4     abs = ABS(60, 25, bound, 1000, [100,  0.5])
5     abs.solve()

 

ObjFunction见简单遗传算法-python实现

posted on 2015-10-06 22:30  Alex Yu  阅读(9479)  评论(8编辑  收藏  举报

导航