差分进化算法-python实现
DEIndividual.py
1 import numpy as np 2 import ObjFunction 3 4 5 class DEIndividual: 6 7 ''' 8 individual of differential evolution algorithm 9 ''' 10 11 def __init__(self, vardim, bound): 12 ''' 13 vardim: dimension of variables 14 bound: boundaries of variables 15 ''' 16 self.vardim = vardim 17 self.bound = bound 18 self.fitness = 0. 19 20 def generate(self): 21 ''' 22 generate a random chromsome for differential evolution algorithm 23 ''' 24 len = self.vardim 25 rnd = np.random.random(size=len) 26 self.chrom = np.zeros(len) 27 for i in xrange(0, len): 28 self.chrom[i] = self.bound[0, i] + \ 29 (self.bound[1, i] - self.bound[0, i]) * rnd[i] 30 31 def calculateFitness(self): 32 ''' 33 calculate the fitness of the chromsome 34 ''' 35 self.fitness = ObjFunction.GrieFunc( 36 self.vardim, self.chrom, self.bound)
DE.py
1 import numpy as np 2 from DEIndividual import DEIndividual 3 import random 4 import copy 5 import matplotlib.pyplot as plt 6 7 8 class DifferentialEvolutionAlgorithm: 9 10 ''' 11 The class for differential evolution algorithm 12 ''' 13 14 def __init__(self, sizepop, vardim, bound, MAXGEN, params): 15 ''' 16 sizepop: population sizepop 17 vardim: dimension of variables 18 bound: boundaries of variables 19 MAXGEN: termination condition 20 param: algorithm required parameters, it is a list which is consisting of [crossover rate CR, scaling factor F] 21 ''' 22 self.sizepop = sizepop 23 self.MAXGEN = MAXGEN 24 self.vardim = vardim 25 self.bound = bound 26 self.population = [] 27 self.fitness = np.zeros((self.sizepop, 1)) 28 self.trace = np.zeros((self.MAXGEN, 2)) 29 self.params = params 30 31 def initialize(self): 32 ''' 33 initialize the population 34 ''' 35 for i in xrange(0, self.sizepop): 36 ind = DEIndividual(self.vardim, self.bound) 37 ind.generate() 38 self.population.append(ind) 39 40 def evaluate(self, x): 41 ''' 42 evaluation of the population fitnesses 43 ''' 44 x.calculateFitness() 45 46 def solve(self): 47 ''' 48 evolution process of differential evolution algorithm 49 ''' 50 self.t = 0 51 self.initialize() 52 for i in xrange(0, self.sizepop): 53 self.evaluate(self.population[i]) 54 self.fitness[i] = self.population[i].fitness 55 best = np.max(self.fitness) 56 bestIndex = np.argmax(self.fitness) 57 self.best = copy.deepcopy(self.population[bestIndex]) 58 self.avefitness = np.mean(self.fitness) 59 self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness 60 self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness 61 print("Generation %d: optimal function value is: %f; average function value is %f" % ( 62 self.t, self.trace[self.t, 0], self.trace[self.t, 1])) 63 while (self.t < self.MAXGEN - 1): 64 self.t += 1 65 for i in xrange(0, self.sizepop): 66 vi = self.mutationOperation(i) 67 ui = self.crossoverOperation(i, vi) 68 xi_next = self.selectionOperation(i, ui) 69 self.population[i] = xi_next 70 for i in xrange(0, self.sizepop): 71 self.evaluate(self.population[i]) 72 self.fitness[i] = self.population[i].fitness 73 best = np.max(self.fitness) 74 bestIndex = np.argmax(self.fitness) 75 if best > self.best.fitness: 76 self.best = copy.deepcopy(self.population[bestIndex]) 77 self.avefitness = np.mean(self.fitness) 78 self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness 79 self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness 80 print("Generation %d: optimal function value is: %f; average function value is %f" % ( 81 self.t, self.trace[self.t, 0], self.trace[self.t, 1])) 82 83 print("Optimal function value is: %f; " % 84 self.trace[self.t, 0]) 85 print "Optimal solution is:" 86 print self.best.chrom 87 self.printResult() 88 89 def selectionOperation(self, i, ui): 90 ''' 91 selection operation for differential evolution algorithm 92 ''' 93 xi_next = copy.deepcopy(self.population[i]) 94 xi_next.chrom = ui 95 self.evaluate(xi_next) 96 if xi_next.fitness > self.population[i].fitness: 97 return xi_next 98 else: 99 return self.population[i] 100 101 def crossoverOperation(self, i, vi): 102 ''' 103 crossover operation for differential evolution algorithm 104 ''' 105 k = np.random.random_integers(0, self.vardim - 1) 106 ui = np.zeros(self.vardim) 107 for j in xrange(0, self.vardim): 108 pick = random.random() 109 if pick < self.params[0] or j == k: 110 ui[j] = vi[j] 111 else: 112 ui[j] = self.population[i].chrom[j] 113 return ui 114 115 def mutationOperation(self, i): 116 ''' 117 mutation operation for differential evolution algorithm 118 ''' 119 a = np.random.random_integers(0, self.sizepop - 1) 120 while a == i: 121 a = np.random.random_integers(0, self.sizepop - 1) 122 b = np.random.random_integers(0, self.sizepop - 1) 123 while b == i or b == a: 124 b = np.random.random_integers(0, self.sizepop - 1) 125 c = np.random.random_integers(0, self.sizepop - 1) 126 while c == i or c == b or c == a: 127 c = np.random.random_integers(0, self.sizepop - 1) 128 vi = self.population[c].chrom + self.params[1] * \ 129 (self.population[a].chrom - self.population[b].chrom) 130 for j in xrange(0, self.vardim): 131 if vi[j] < self.bound[0, j]: 132 vi[j] = self.bound[0, j] 133 if vi[j] > self.bound[1, j]: 134 vi[j] = self.bound[1, j] 135 return vi 136 137 def printResult(self): 138 ''' 139 plot the result of the differential evolution algorithm 140 ''' 141 x = np.arange(0, self.MAXGEN) 142 y1 = self.trace[:, 0] 143 y2 = self.trace[:, 1] 144 plt.plot(x, y1, 'r', label='optimal value') 145 plt.plot(x, y2, 'g', label='average value') 146 plt.xlabel("Iteration") 147 plt.ylabel("function value") 148 plt.title("Differential Evolution Algorithm for function optimization") 149 plt.legend() 150 plt.show()
运行程序:
1 if __name__ == "__main__": 2 3 bound = np.tile([[-600], [600]], 25) 4 dea = DEA(60, 25, bound, 1000, [0.8, 0.6]) 5 dea.solve()
ObjFunction见简单遗传算法-python实现。
作者:Alex Yu
出处:http://www.cnblogs.com/biaoyu/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。