uboot————第二阶段start_armboot 函数详解

1:上一节讲到start.S中进行了一系列的SoC相关硬件初始化以后进行了长跳转到start_armboot 函数中;

start_armboot进一步初始化board中硬件,并设置了uboot下的命令行、环境变量、基本命令、跳转到kernel

下面详细介绍start_armboot中的代码:

------------------------第一段代码---------------------------------------------

红色代码为条件编译以后要执行的代码

 1 void start_armboot (void)
 2 {
 3     init_fnc_t **init_fnc_ptr;
 4     char *s;
 5     int mmc_exist = 0;
 6 #if !defined(CFG_NO_FLASH) || defined (CONFIG_VFD) || defined(CONFIG_LCD)
 7     ulong size;
 8 #endif
 9 
10 #if defined(CONFIG_VFD) || defined(CONFIG_LCD)
11     unsigned long addr;
12 #endif
13 
14 #if defined(CONFIG_BOOT_MOVINAND)
15     uint *magic = (uint *) (PHYS_SDRAM_1);
16 #endif
17 
18     /* Pointer is writable since we allocated a register for it */
19 #ifdef CONFIG_MEMORY_UPPER_CODE /* by scsuh */
20     ulong gd_base;
21 
22     gd_base = CFG_UBOOT_BASE + CFG_UBOOT_SIZE - CFG_MALLOC_LEN - CFG_STACK_SIZE - sizeof(gd_t);
23 #ifdef CONFIG_USE_IRQ
24     gd_base -= (CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ);
25 #endif
26     gd = (gd_t*)gd_base;
27 #else    //CONFIG_MEMORY_UPPER_CODE
28     gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));
29 #endif
30 
31     if (readl(INF_REG_BASE+INF_REG0_OFFSET)==0xFFAADDEE)
32     {
33         extern int gbl_silent;
34         gbl_silent = 1;
35     }
36 
37     /* compiler optimization barrier needed for GCC >= 3.4 */      //这段是c语言内嵌汇编,为了实现内存墙;
38     __asm__ __volatile__("": : :"memory");
39 
40     memset ((void*)gd, 0, sizeof (gd_t));                
41     gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));
42     memset (gd->bd, 0, sizeof (bd_t));
43 
44     monitor_flash_len = _bss_start - _armboot_start;
45 
46     for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {
47         if ((*init_fnc_ptr)() != 0) {
48             hang ();
49         }
50     }
-------------------未完待续------------------------

首先看一下

init_fnc_t **init_fnc_ptr;这个变量,这是一个init_fnc_t 类型的二重指针;typedef int (init_fnc_t) (void);
可以看出init_fnc_t类型为 返回值为int 传参为空的函数类型,看一下下面这段代码:对
init_fnc_ptr 赋值为init_sequence(init_sequence为一个函数指针数组,这个数字为一个全局变量,存放的是硬件初始化有关的
一些函数这些函数类型都是init_fnc_t类型),因此下面for循环的作用就是遍历init_sequence数组中的所有函数,并执行这些函数;

如果这些初始化函数的返回值为0的话则执行hang() 挂起函数;hang函数的作用是输出
puts ("### ERROR ### Please RESET the board ###\n");并进入一个死循环;
总结一下:这段代码是初始化一个全局变量数组,数组中存放一些硬件初始化相关的函数指针,遍历这些函数,并进行相应硬件的初始化;这些全局变量放在数据段;
 
for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {
        if ((*init_fnc_ptr)() != 0) {
            hang ();
        }
    }
 1 init_fnc_t *init_sequence[] = {
 2     cpu_init,        /* basic cpu dependent setup */
 3 #if defined(CONFIG_SKIP_RELOCATE_UBOOT)
 4     reloc_init,        /* Set the relocation done flag, must
 5                    do this AFTER cpu_init(), but as soon
 6                    as possible */
 7 #endif
 8     board_init,        /* basic board dependent setup */
 9     interrupt_init,        /* set up exceptions */
10     env_init,        /* initialize environment */
11     init_baudrate,        /* initialze baudrate settings */
12     serial_init,        /* serial communications setup */
13     console_init_f,        /* stage 1 init of console */
14     display_banner,        /* say that we are here */
15 #if defined(CONFIG_DISPLAY_CPUINFO)
16     print_cpuinfo,        /* display cpu info (and speed) */
17 #endif
18 #if defined(CONFIG_DISPLAY_BOARDINFO)
19     checkboard,        /* display board info */
20 #endif
21 #if defined(CONFIG_HARD_I2C) || defined(CONFIG_SOFT_I2C)
22     init_func_i2c,
23 #endif
24     dram_init,        /* configure available RAM banks */
25     display_dram_config,
26     NULL,
27 };
1 void hang (void)
2 {
3     puts ("### ERROR ### Please RESET the board ###\n");
4     for (;;);
5 }

下面这段代码是为gd_base、gd_bd、两个全局变量分配内存地址;gd_t类型为结构体其中的内容为:大小为36byte;

{
  bd_t 类型指针              //4字节
  flag 无符号整形             //4字节
  baudrate 波特率 无符号整形        //4字节
  have_console 无符号整形          //4字节
  reloc_off; /* Relocation Offset */  //4字节
  env_addr                  //4字节
  env_valid                  //4字节
  unsigned long fb_base LCD的内存基地址  //4字节
  void **jt; /* jump table */      //指针4字节         
}

bd_t 也为一结构体,大小为42字节
{
  int 波特率          //4字节
  unsigned int IP地址    //4字节
  unsigned char 网卡地址   //6字节
  环境变量指针          //4字节
  机器码            //4字节
  启动参数          //4字节
  内存配置结构体        //8字节*2
          
}

下面这段代码的作用:gd_base 为0x23e00000 + 0x200000 - 912K -512K - 36byte这个地址用来存放这个全局变量

同样 bd_t 全局变量的地址设置在gd_base往下移动42byte的地址;

从这段代码我们可以看出uboot是如何进行内存分配的;

可以看下图:下图为uboot中的内存;

 这段代码作的事情就是为gd_t、bd_t两个结构体分配内存地址,并初始化gd、gd->bd指针分别指向这两个结构体;

#define DECLARE_GLOBAL_DATA_PTR     register volatile gd_t *gd asm ("r8")

gd为一个register volatile结构体指针;asm ("r8")意思是放在r8寄存器中;


20     ulong gd_base;
21 
22     gd_base = CFG_UBOOT_BASE + CFG_UBOOT_SIZE - CFG_MALLOC_LEN - CFG_STACK_SIZE - sizeof(gd_t);
23
26     gd = (gd_t*)gd_base;

31   36 
37     /* compiler optimization barrier needed for GCC >= 3.4 */      //这段是c语言内嵌汇编,为了实现内存墙;
38     __asm__ __volatile__("": : :"memory");
39 
40     memset ((void*)gd, 0, sizeof (gd_t));                
41     gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));
42     memset (gd->bd, 0, sizeof (bd_t));
43 
44     monitor_flash_len = _bss_start - _armboot_start;
 1 typedef    struct    global_data {
 2     bd_t        *bd;
 3     unsigned long    flags;
 4     unsigned long    baudrate;
 5     unsigned long    have_console;    /* serial_init() was called */
 6     unsigned long    reloc_off;    /* Relocation Offset */
 7     unsigned long    env_addr;    /* Address  of Environment struct */
 8     unsigned long    env_valid;    /* Checksum of Environment valid? */
 9     unsigned long    fb_base;    /* base address of frame buffer */
10 #ifdef CONFIG_VFD
11     unsigned char    vfd_type;    /* display type */
12 #endif
13 #if 0
14     unsigned long    cpu_clk;    /* CPU clock in Hz!        */
15     unsigned long    bus_clk;
16     phys_size_t    ram_size;    /* RAM size */
17     unsigned long    reset_status;    /* reset status register at boot */
18 #endif
19     void        **jt;        /* jump table */
20 } gd_t;
 1 typedef struct bd_info {
 2     int            bi_baudrate;    /* serial console baudrate */
 3     unsigned long    bi_ip_addr;    /* IP Address */
 4     unsigned char    bi_enetaddr[6]; /* Ethernet adress */
 5     struct environment_s           *bi_env;
 6     ulong            bi_arch_number;    /* unique id for this board */
 7     ulong            bi_boot_params;    /* where this board expects params */
 8     struct                /* RAM configuration */
 9     {
10     ulong start;
11     ulong size;
12     }            bi_dram[CONFIG_NR_DRAM_BANKS];
13 #ifdef CONFIG_HAS_ETH1
14     /* second onboard ethernet port */
15     unsigned char   bi_enet1addr[6];
16 #endif
17 } bd_t;

 

 下面看一下init_sequence数组中有有哪些函数:

init_fnc_t *init_sequence[] = {
    cpu_init,        /* basic cpu dependent setup */
#if defined(CONFIG_SKIP_RELOCATE_UBOOT)
    reloc_init,        /* Set the relocation done flag, must
                   do this AFTER cpu_init(), but as soon
                   as possible */
#endif
    board_init,        /* basic board dependent setup */
    interrupt_init,        /* set up exceptions */
    env_init,        /* initialize environment */
    init_baudrate,        /* initialze baudrate settings */
    serial_init,        /* serial communications setup */
    console_init_f,        /* stage 1 init of console */
    display_banner,        /* say that we are here */
#if defined(CONFIG_DISPLAY_CPUINFO)
    print_cpuinfo,        /* display cpu info (and speed) */
#endif
#if defined(CONFIG_DISPLAY_BOARDINFO)
    checkboard,        /* display board info */
#endif
#if defined(CONFIG_HARD_I2C) || defined(CONFIG_SOFT_I2C)
    init_func_i2c,
#endif
    dram_init,        /* configure available RAM banks */
    display_dram_config,
    NULL,
};

函数1:cpu_init函数;因为cpu相关的初始化已经在_start函数中做了,所以这里什么也没有做;

 1 int cpu_init (void)
 2 {
 3     /*
 4      * setup up stacks if necessary
 5      */
 6 #ifdef CONFIG_USE_IRQ            //这个未定义
 7     IRQ_STACK_START = _armboot_start - CFG_MALLOC_LEN - CFG_GBL_DATA_SIZE - 4;
 8     FIQ_STACK_START = IRQ_STACK_START - CONFIG_STACKSIZE_IRQ;
 9 #endif
10     return 0;
11 }

函数2:board_init函数;这个函数中初始化了dm9000网卡,并且对gd->bd中的机器码以及启动参数赋值;

这里要注意一下:uboot中赋值的机器码要和linux内核中的机器码要一致,否则不能正常启动;

boot参数为:0x02000000+0x100;

 1 int board_init(void)
 2 {
 3     DECLARE_GLOBAL_DATA_PTR;
 4 
 5 
 6 #ifdef CONFIG_DRIVER_DM9000
 7     dm9000_pre_init();
 8 #endif
 9 
10     gd->bd->bi_arch_number = MACH_TYPE;
11     gd->bd->bi_boot_params = (PHYS_SDRAM_1+0x100);
12 
13     return 0;
14 }

函数3:interrupt_init中的初始化

 

 1 int interrupt_init(void)
 2 {
 3 
 4     S5PC11X_TIMERS *const timers = S5PC11X_GetBase_TIMERS();
 5 
 6     /* use PWM Timer 4 because it has no output */
 7     /* prescaler for Timer 4 is 16 */
 8     timers->TCFG0 = 0x0f00;              //设置预分频为15 +1 = 16
 9     if (timer_load_val == 0) {
10         /*
11          * for 10 ms clock period @ PCLK with 4 bit divider = 1/2
12          * (default) and prescaler = 16. Should be 10390
13          * @33.25MHz and  @ 66 MHz
14          */
15         timer_load_val = get_PCLK() / (16 * 100);    //设置为10ms
16     }
17 
18     /* load value for 10 ms timeout */
19     lastdec = timers->TCNTB4 = timer_load_val;
20     /* auto load, manual update of Timer 4 */
21     timers->TCON = (timers->TCON & ~0x00700000) | TCON_4_AUTO | TCON_4_UPDATE;        
22     /* auto load, start Timer 4 */
23     timers->TCON = (timers->TCON & ~0x00700000) | TCON_4_AUTO | COUNT_4_ON;
24     timestamp = 0;
25 
26 
27     return (0);
28 }

代码解析:

  typedef vu_long S5PC11X_REG32;

S5PC11X_TIMERS:定义了一个结构体类型,把与时钟有关的所有所有寄存器都存放在这个结构体内
typedef struct {
    S5PC11X_REG32    TCFG0;
    S5PC11X_REG32    TCFG1;
    S5PC11X_REG32    TCON;
    S5PC11X_TIMER    ch[4];
    S5PC11X_REG32    TCNTB4;
    S5PC11X_REG32    TCNTO4;
} /*__attribute__((__packed__))*/ S5PC11X_TIMERS;

 这句代码的意思就是把

S5PC11X_TIMERS *const timers = S5PC11X_GetBase_TIMERS();
S5PC11X_GetBase_TIMERS函数:的作用就是把timer寄存器的基地址强制类型转换为S5PC11X_TIMERS *  类型然后赋值给 timers变量;timers->TCFG0实际就是代表基地址右移4字节
之后的地址中的值,直接赋值相当于把0x0f00这个值放到 TCFG0对应的寄存器地址处,但是这个要注意的是,寄存器必须设置为连续的/或者一一对应的,否则会造成赋值的地址错误;
 timers->TCFG0 = 0x0f00;
static inline S5PC11X_TIMERS * S5PC11X_GetBase_TIMERS(void)
{
    return (S5PC11X_TIMERS *)ELFIN_TIMER_BASE;
}

剩下的代码就和裸机的代码一致了;TCON的timer4的相应控制为清0,设置为自动reload,并且第一次要手动载入,然后时在清0,设置reload,开启timer4

timers->TCON = (timers->TCON & ~0x00700000) | TCON_4_AUTO | TCON_4_UPDATE;        
22     /* auto load, start Timer 4 */
23     timers->TCON = (timers->TCON & ~0x00700000) | TCON_4_AUTO | COUNT_4_ON;
----------------------------------

函数4:env_init
 1 int env_init(void)
 2 {
 3 #if defined(ENV_IS_EMBEDDED)
 4     ulong total;
 5     int crc1_ok = 0, crc2_ok = 0;
 6     env_t *tmp_env1, *tmp_env2;
 7 
 8     total = CFG_ENV_SIZE;      // tatal = 0x4000 16k的大小,环境变量整个大小为16k
 9 
10     tmp_env1 = env_ptr;
11     tmp_env2 = (env_t *)((ulong)env_ptr + CFG_ENV_SIZE);
12 
13     crc1_ok = (crc32(0, tmp_env1->data, ENV_SIZE) == tmp_env1->crc);
14     crc2_ok = (crc32(0, tmp_env2->data, ENV_SIZE) == tmp_env2->crc);
15 
16     if (!crc1_ok && !crc2_ok)
17         gd->env_valid = 0;
18     else if(crc1_ok && !crc2_ok)
19         gd->env_valid = 1;
20     else if(!crc1_ok && crc2_ok)
21         gd->env_valid = 2;
22     else {
23         /* both ok - check serial */
24         if(tmp_env1->flags == 255 && tmp_env2->flags == 0)
25             gd->env_valid = 2;
26         else if(tmp_env2->flags == 255 && tmp_env1->flags == 0)
27             gd->env_valid = 1;
28         else if(tmp_env1->flags > tmp_env2->flags)
29             gd->env_valid = 1;
30         else if(tmp_env2->flags > tmp_env1->flags)
31             gd->env_valid = 2;
32         else /* flags are equal - almost impossible */
33             gd->env_valid = 1;
34     }
35 
36     if (gd->env_valid == 1)
37         env_ptr = tmp_env1;
38     else if (gd->env_valid == 2)
39         env_ptr = tmp_env2;
40 #else /* ENV_IS_EMBEDDED */
41     gd->env_addr  = (ulong)&default_environment[0];
42     gd->env_valid = 1;
43 #endif /* ENV_IS_EMBEDDED */
44 
45     return (0);
46 }

执行的是红色的代码:即把common.c中初始化好的default_environment地址赋值到gd->env_addr中,env_valid 赋值为1; 这里对字符串数组的初始化有些疑问???????

uchar default_environment[] = {
#endif
#ifdef    CONFIG_BOOTARGS
    "bootargs="    CONFIG_BOOTARGS            "\0"
#endif
#ifdef    CONFIG_BOOTCOMMAND
    "bootcmd="    CONFIG_BOOTCOMMAND        "\0"
#endif
。。。。。。。。。。。。。。。。。。。。。
#ifdef  CONFIG_CLOCKS_IN_MHZ
    "clocks_in_mhz=1\0"
#endif
#if defined(CONFIG_PCI_BOOTDELAY) && (CONFIG_PCI_BOOTDELAY > 0)
    "pcidelay="    MK_STR(CONFIG_PCI_BOOTDELAY)    "\0"
#endif
#ifdef  CONFIG_EXTRA_ENV_SETTINGS
    CONFIG_EXTRA_ENV_SETTINGS
#endif
    "\0"
};

---------------------------------------------------------

函数5:init_baudrate初始化波特率:从env中获取波特率 赋值给gd->bd->bi_baudrate  gd->baudrate

实现是通过以下几个函数来实现的我们逐一来分析:

/* init_baudrate这个函数的作用就是从环境变量中读取出波特率,从之前的波特率初始化函数看出,
实际上环境变量中的波特率就是我们在x210_sd.h头文件中配置的波特率config_baudrate,*/
static
int init_baudrate (void) { char tmp[64]; /* long enough for environment variables */ int i = getenv_r ("baudrate", tmp, sizeof (tmp)); gd->bd->bi_baudrate = gd->baudrate = (i > 0)   ? (int) simple_strtoul (tmp, NULL, 10)                //simple_strtoul 把字符串tmp中的波特率转成十进制数字; : CONFIG_BAUDRATE; return (0); }

/*这个函数的作用是读取环境变量name 到 缓存buf中,读取成功返回n大于0,失败返回0*/ 
1
int getenv_r (char *name, char *buf, unsigned len) 2 { 3 int i, nxt; 4 5 for (i=0; env_get_char(i) != '\0'; i=nxt+1) { 6 int val, n; 7 8 for (nxt=i; env_get_char(nxt) != '\0'; ++nxt) { 9 if (nxt >= CFG_ENV_SIZE) { 10 return (-1); 11 } 12 } 13 if ((val=envmatch((uchar *)name, i)) < 0) 14 continue; 15 /* found; copy out */ 16 n = 0; 17 while ((len > n++) && (*buf++ = env_get_char(val++)) != '\0')     //找到对应的环境变量以后,把这个环境变量保存在buf中,并返回赋值的长度 18 ; 19 if (len == n) 20 *buf = '\0'; 21 return (n); 22 } 23 return (-1); 24 }
/*这个函数的作用是判断环境变量是从内存还是sd卡中赋值的,然后返回index对应的环境变量中的字符*/
uchar env_get_char (int index) { uchar c; /* if relocated to RAM */ if (gd->flags & GD_FLG_RELOC) c = env_get_char_memory(index); else c = env_get_char_init(index); return (c); }
 /* envmatch函数的作用是判断*s1,是否和i2对应的字符串相等,如果相等返回i2,*/
1
int envmatch (uchar *s1, int i2) 2 { 3 4 while (*s1 == env_get_char(i2++)) 5 if (*s1++ == '=') 6 return(i2); 7 if (*s1 == '\0' && env_get_char(i2-1) == '=') 8 return(i2); 9 return(-1); 10 }
/* 从内存中读取环境变量字符,作为返回值返回 */
1
uchar env_get_char_memory (int index) 2 { 3 if (gd->env_valid) { 4 return ( *((uchar *)(gd->env_addr + index)) ); 5 } else { 6 return ( default_environment[index] ); 7 } 8 }

 

 

--------------------------------------------------------------------------------------------------

 

函数6:串口的初始化serial_init,因为我们在_start函数中已经初始化了串口,并打印了OK

可以看出这函数中实际是调用了serial_setbrg函数,而这个函数什么也没有做;

1 int serial_init(void)
2 {
3     serial_setbrg();
4 
5     return (0);
6 }
1 void serial_setbrg(void)
2 {
3     DECLARE_GLOBAL_DATA_PTR;
4 
5     int i;
6     for (i = 0; i < 100; i++);
7 }

 

 
--------------------------------------------------------------


函数7:console_init_f 控制台初始化函数
实际在这里只把gd中的have_console赋值为1;真正的控制台初始化函数在console_init_r函数中;
 1 int console_init_f (void)
 2 {
 3     gd->have_console = 1;
 4 
 5 #ifdef CONFIG_SILENT_CONSOLE
 6     if (getenv("silent") != NULL)
 7         gd->flags |= GD_FLG_SILENT;
 8 #endif
 9 
10     return (0);
11 }

 

 

-------------------------------------------------------------------------

 

函数8:display_banner函数

实际上这个函数的作用是打印version_string字符串,和打开背光

const char version_string[] =
U_BOOT_VERSION" (" __DATE__ " - " __TIME__ ")"CONFIG_IDENT_STRING;

U_BOOT_VERSION是在makefile中自动生成的,在version_autogenerated.h中#define U_BOOT_VERSION "U-Boot 1.3.4"  

__DATE__  __TIME__  也应在是在某个脚本中生成的,然后输出到某个头文件包含的一个全局变量;所以或打印出 U-BOOT 1.3.4 日期 时间

 

 1 static int display_banner (void)
 2 {
 3     printf ("\n\n%s\n\n", version_string);
 4     debug ("U-Boot code: %08lX -> %08lX  BSS: -> %08lX\n",
 5            _armboot_start, _bss_start, _bss_end);
 6 #ifdef CONFIG_MEMORY_UPPER_CODE /* by scsuh */
 7     debug("\t\bMalloc and Stack is above the U-Boot Code.\n");
 8 #else
 9     debug("\t\bMalloc and Stack is below the U-Boot Code.\n");
10 #endif
11 #ifdef CONFIG_MODEM_SUPPORT
12     debug ("Modem Support enabled\n");
13 #endif
14 #ifdef CONFIG_USE_IRQ
15     debug ("IRQ Stack: %08lx\n", IRQ_STACK_START);
16     debug ("FIQ Stack: %08lx\n", FIQ_STACK_START);
17 #endif
18     open_backlight();//lqm.
19     //open_gprs();
20 
21     return (0);
22 }

 

 

 

----------------------------------------------------------------------

函数9:printf_cpuinfo 打印cpu信息,红色代码为要执行的代码;

 

 1 int print_cpuinfo(void)
 2 {
 3     uint set_speed;
 4     uint tmp;
 5     uchar result_set;
 6 
 7 #if defined(CONFIG_CLK_533_133_100_100)
 8     set_speed = 53300;
 9 #elif defined(CONFIG_CLK_667_166_166_133)
10     set_speed = 66700;
11 #elif defined(CONFIG_CLK_800_200_166_133)
12     set_speed = 80000;
13 #elif defined(CONFIG_CLK_1000_200_166_133)
14     set_speed = 100000;
15 #elif defined(CONFIG_CLK_1200_200_166_133)
16     set_speed = 120000;
17 #else
18     set_speed = 100000;
19     printf("Any CONFIG_CLK_XXX is not enabled\n");
20 #endif
21 
22     tmp = (set_speed / (get_ARMCLK()/1000000));
23 
24     if((tmp < 105) && (tmp > 95)){
25         result_set = 1;
26     } else {
27         result_set = 0;
28     }
29 
30 #ifdef CONFIG_MCP_SINGLE
31     printf("\nCPU:  S5PV210@%ldMHz(%s)\n", get_ARMCLK()/1000000, ((result_set == 1) ? "OK" : "FAIL"));
32 #else
33     printf("\nCPU:  S5PC110@%ldMHz(%s)\n", get_ARMCLK()/1000000, ((result_set == 1) ? "OK" : "FAIL"));
34 #endif
35     printf("        APLL = %ldMHz, HclkMsys = %ldMHz, PclkMsys = %ldMHz\n",
36             get_FCLK()/1000000, get_HCLK()/1000000, get_PCLK()/1000000);
37 #if 1
38     printf("    MPLL = %ldMHz, EPLL = %ldMHz\n",
39             get_MPLL_CLK()/1000000, get_PLLCLK(EPLL)/1000000);
40     printf("               HclkDsys = %ldMHz, PclkDsys = %ldMHz\n",
41             get_HCLKD()/1000000, get_PCLKD()/1000000);
42     printf("               HclkPsys = %ldMHz, PclkPsys = %ldMHz\n",
43             get_HCLKP()/1000000, get_PCLKP()/1000000);
44     printf("               SCLKA2M  = %ldMHz\n", get_SCLKA2M()/1000000);
45 #endif
46     puts("Serial = CLKUART ");
47 
48     return 0;
49 }

包含了一下几个函数:get_ARMCLK函数、get_PLLCLK函数。

/*这个函数是查看时钟域24MHz经过APLL倍频以后,在经过分频器以后获得的cpu的频率
详细代码分析可以看时钟哪个章节*/
1
ulong get_ARMCLK(void) 2 { 3 ulong div,apll_ratio; 4 5 div = CLK_DIV0_REG; 6 apll_ratio = ((div>>0) & 0x7); 7 8 return ((get_PLLCLK(APLL)) / (apll_ratio + 1)); 9 10 }
/*这个函数用来获取PLL倍频以后的时钟频率:APLL、MPLL、 EPLL 
 详细代码分析可以看裸机中时钟那一章节*/

1
static ulong get_PLLCLK(int pllreg) 2 { 3 ulong r, m, p, s; 4 5 if (pllreg == APLL) { 6 r = APLL_CON0_REG; 7 m = (r>>16) & 0x3ff; 8 } else if (pllreg == MPLL) { 9 r = MPLL_CON_REG; 10 m = (r>>16) & 0x3ff; 11 } else if (pllreg == EPLL) { 12 r = EPLL_CON_REG; 13 m = (r>>16) & 0x1ff; 14 } else 15 hang(); 16 17 p = (r>>8) & 0x3f; 18 s = r & 0x7; 19 20 if (pllreg == APLL) 21 s= s-1; 22 23 return (m * (CONFIG_SYS_CLK_FREQ / (p * (1 << s)))); 24 }

同样可以分析其他输出信息:最后的输出信息如下:

 

 

-------------------------------------------------------------------------------

函数10:checkboard:打印board信息

 1 int checkboard(void)
 2 {
 3 #ifdef CONFIG_MCP_SINGLE
 4 #if defined(CONFIG_VOGUES)
 5     printf("\nBoard:   VOGUESV210\n");
 6 #else
 7     printf("\nBoard:   X210\n");
 8 #endif //CONFIG_VOGUES
 9 #else
10     printf("\nBoard:   X210\n");
11 #endif
12     return (0);
13 }

 

------------------------------------------------------------------------------

 

函数11:dram_init实际执行的一下红色代码:实际真正的初始化函数已经在_start函数中执行了,而这里只是把dram的信息赋值到全局变量gd->bd中;

把chip1的首地址和大小以及chip2的首地址和大小放入全局变量中;

 1 int dram_init(void)
 2 {
 3     DECLARE_GLOBAL_DATA_PTR;
 4 
 5     gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
 6     gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
 7 
 8 #if defined(PHYS_SDRAM_2)
 9     gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
10     gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
11 #endif
12 
13 #if defined(PHYS_SDRAM_3)
14     gd->bd->bi_dram[2].start = PHYS_SDRAM_3;
15     gd->bd->bi_dram[2].size = PHYS_SDRAM_3_SIZE;
16 #endif
17 
18     return 0;
19 }

 

 

------------------------------------------------------------------------------

 

函数12:display_dram_config实际执行的为红色部分代码

 1 static int display_dram_config (void)
 2 {
 3     int i;
 4 
 5 #ifdef DEBUG
 6     puts ("RAM Configuration:\n");
 7 
 8     for(i=0; i<CONFIG_NR_DRAM_BANKS; i++) {
 9         printf ("Bank #%d: %08lx ", i, gd->bd->bi_dram[i].start);
10         print_size (gd->bd->bi_dram[i].size, "\n");
11     }
12 #else
13     ulong size = 0;
14 //这段代码的作用就是计算chip1、chip2一共多少内存并输出出来
15     for (i=0; i<CONFIG_NR_DRAM_BANKS; i++) {    
16         size += gd->bd->bi_dram[i].size;
17     }
18 
19     puts("DRAM:    ");
20     print_size(size, "\n");
21 #endif
22 
23     return (0);
24 }

输出内容如下: 

 










 

posted @ 2017-02-07 00:08  biaohc  阅读(4653)  评论(0编辑  收藏  举报