YARN源码学习(六)-----JobHistory中的job信息获取与分析

前言

继续延续上一篇文章的主题,2个字,监控,分布式系统要想做到足够大,足够强,足够稳定,首先需要做好的就是其中的监控.现在开源的分布式系统很多,YARN就是其中一种,比较值得庆幸的一点是,Yarn已经在Ganglia做了很多指标的监控分析.比如namenode rpc请求数,datanode写入字节数,读字节数,jvm相关的gc次数等等.但是看似这些指标非常的完美,其实不然,为什么这么说呢,因为粒度太粗,比如说下面这个场景,我想分析集群中特点节点机器上哪个task异常,导致拖垮整个集群的运作效率.这个时候,显然分析Ganglia上的粗粒度监控指标就不能解决这样的场景问题了吧.不过还好,Yarn提供了这样的额外服务,叫做JobHistory,他也是一项独立的服务.


什么是JobHistory

什么是JobHistory,jobHistory翻译成中文就是作业历史,就是作业历史记录.就是保存了集群运行过的历史Job信息数据.下面是一张此服务的Web UI视图:


可以很清楚的看到了上面执行过的job记录.因为是我测试是跑的几个word-count程序,所以信息比较少.当然每个job记录的链接还能往里继续点,里面保存了更加详细的task的运行信息,包括map数,reduce数,开始结束时间等等,如下图


JobHistory上所展示的数据是非常多的,但是唯一感到不足的是,JobHistory的展示效果太过单一,每个Job的数据结果都是独立展现的,并没有一个汇总的页面,不便于比较分析.所以一个比较大胆的想法就诞生了,我们是不是可以拿到Job的信息记录,存入自己的db,然后自己做分析呢.OK,想法固然不错,但是还是得从源码中进行分析,首先要明白这些数据到底存在哪.


JobHistory作业数据存储

下面来描述一下我是如何分析发现JobHistory作业数据的存储源的.首先定位到JobHistory这个大类.

/**
 * Loads and manages the Job history cache.
 */
public class JobHistory extends AbstractService implements HistoryContext {
  private static final Log LOG = LogFactory.getLog(JobHistory.class);

  public static final Pattern CONF_FILENAME_REGEX = Pattern.compile("("
      + JobID.JOBID_REGEX + ")_conf.xml(?:\\.[0-9]+\\.old)?");
  public static final String OLD_SUFFIX = ".old";

  // Time interval for the move thread.
  private long moveThreadInterval;

  private Configuration conf;

  private ScheduledThreadPoolExecutor scheduledExecutor = null;
  
  //注意下面这2个类的名称,显然与存储信息相关
  private HistoryStorage storage = null;
  private HistoryFileManager hsManager = null;
  ScheduledFuture<?> futureHistoryCleaner = null;
...

从这里就可以看出来,JobHistory也是一项服务.关注到上面的倒数3行有与存储相关的类,我们可以重点关注这2个变量.然后扫描JobHistory的内部方法,你应该会发现有下面这样的方法

 @Override
  public Map<JobId, Job> getAllJobs() {
    return storage.getAllPartialJobs();
  }
这个方法的任务就是获取所有的job信息存入map中,然后继续跟踪这行代码,看看他的具体实现.但是得要先明白storage是什么类.在服务初始化方法中,会存在初始构造的过程

@Override
  protected void serviceInit(Configuration conf) throws Exception {
    LOG.info("JobHistory Init");
    .....

    hsManager = createHistoryFileManager();
    hsManager.init(conf);
    try {
      hsManager.initExisting();
    } catch (IOException e) {
      throw new YarnRuntimeException("Failed to intialize existing directories", e);
    }

    storage = createHistoryStorage();
    
    if (storage instanceof Service) {
      ((Service) storage).init(conf);
    }
    storage.setHistoryFileManager(hsManager);

    super.serviceInit(conf);
  }
在这里可以看到,historyStorage的使用需要hsManager的协助.在构造historyStorage的构造操作中,是执行了下面的方法

protected HistoryStorage createHistoryStorage() {
    return ReflectionUtils.newInstance(conf.getClass(
        JHAdminConfig.MR_HISTORY_STORAGE, CachedHistoryStorage.class,
        HistoryStorage.class), conf);
  }
说明具体实现子类是CacheHistoryStorage类,getJob的方法是下面的方法实现

@Override
  public Map<JobId, Job> getAllPartialJobs() {
    LOG.debug("Called getAllPartialJobs()");
    SortedMap<JobId, Job> result = new TreeMap<JobId, Job>();
    try {
      for (HistoryFileInfo mi : hsManager.getAllFileInfo()) {
        if (mi != null) {
          JobId id = mi.getJobId();
          result.put(id, new PartialJob(mi.getJobIndexInfo(), id));
        }
      }
    } catch (IOException e) {
      LOG.warn("Error trying to scan for all FileInfos", e);
      throw new YarnRuntimeException(e);
    }
    return result;
  }
这里果然用到了hsManager,所以可以得出结论,job信息是从historyInfo信息中得来.而在hsManager的getAllPartialJobs是从下面这个方法来的

public Collection<HistoryFileInfo> getAllFileInfo() throws IOException {
    scanIntermediateDirectory();
    return jobListCache.values();
  }
他的初始化方法在下面的方法中实现

 /**
   * Populates index data structures. Should only be called at initialization
   * times.
   */
  @SuppressWarnings("unchecked")
  void initExisting() throws IOException {
    LOG.info("Initializing Existing Jobs...");
    List<FileStatus> timestampedDirList = findTimestampedDirectories();
    // Sort first just so insertion is in a consistent order
    Collections.sort(timestampedDirList);
    for (FileStatus fs : timestampedDirList) {
      // TODO Could verify the correct format for these directories.
      addDirectoryToSerialNumberIndex(fs.getPath());
    }
    for (int i= timestampedDirList.size() - 1;
        i >= 0 && !jobListCache.isFull(); i--) {
      FileStatus fs = timestampedDirList.get(i); 
      addDirectoryToJobListCache(fs.getPath());
    }
  }
第二行扫描目录的方法就是发现JobHistory的存储目录,然后获取FileStatus对象.下面是对第一个方法的具体介绍

/**
   * Finds all history directories with a timestamp component by scanning the
   * filesystem. Used when the JobHistory server is started.
   * 
   * @return list of history directories
   */
  protected List<FileStatus> findTimestampedDirectories() throws IOException {
    List<FileStatus> fsList = JobHistoryUtils.localGlobber(doneDirFc,
        doneDirPrefixPath, DONE_BEFORE_SERIAL_TAIL);
    return fsList;
  }
doneDirPrefixPath就是存储目录,他是从配置而来的.

/**
   * Gets the configured directory prefix for Done history files.
   * @param conf the configuration object
   * @return the done history directory
   */
  public static String getConfiguredHistoryServerDoneDirPrefix(
      Configuration conf) {
    String doneDirPrefix = conf.get(JHAdminConfig.MR_HISTORY_DONE_DIR);
    if (doneDirPrefix == null) {
      doneDirPrefix = conf.get(MRJobConfig.MR_AM_STAGING_DIR,
          MRJobConfig.DEFAULT_MR_AM_STAGING_DIR)
          + "/history/done";
    }
    return ensurePathInDefaultFileSystem(doneDirPrefix, conf);
  }
配置中的路径加上前缀"history/done",配置是下面这个

<property>
<name>mapreduce.jobhistory.done-dir</name>
<value>${yarn.app.mapreduce.am.staging-dir}/history/done</value>
<source>mapred-default.xml</source>
</property>

<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/tmp/hadoop-yarn/staging</value>
<source>mapred-default.xml</source>
</property>

因此我找到我的配置最终地址为/tmp/hadoop-yarn/staging/history/done,然后马上用hadoop fs -ls 目标目录观察一下保存job信息的文件,

bin/hadoop fs -ls /tmp/hadoop-yarn/staging/history/done/2015/09/23
drwxrwx---   - root supergroup          0 2015-09-23 13:47 /tmp/hadoop-yarn/staging/history/done/2015/09/23/000000

不过这还是目录,继续ls命令

Found 8 items
-rwxrwx---   1 root supergroup      33711 2015-09-23 11:05 /tmp/hadoop-yarn/staging/history/done/2015/09/23/000000/job_1442921980247_0001-1442977423178-root-word+count-1442977507137-1-1-SUCCEEDED-root.default-1442977472789.jhist
-rwxrwx---   1 root supergroup     115932 2015-09-23 11:05 /tmp/hadoop-yarn/staging/history/done/2015/09/23/000000/job_1442921980247_0001_conf.xml
-rwxrwx---   1 root supergroup      33707 2015-09-23 11:18 /tmp/hadoop-yarn/staging/history/done/2015/09/23/000000/job_1442978197910_0001-1442978284737-root-word+count-1442978334462-1-1-SUCCEEDED-root.default-1442978306980.jhist
-rwxrwx---   1 root supergroup     115933 2015-09-23 11:18 /tmp/hadoop-yarn/staging/history/done/2015/09/23/000000/job_1442978197910_0001_conf.xml
-rwxrwx---   1 root supergroup      33703 2015-09-23 13:32 /tmp/hadoop-yarn/staging/history/done/2015/09/23/000000/job_1442986230207_0001-1442986273588-root-word+count-1442986329305-1-1-SUCCEEDED-root.default-1442986297304.jhist
-rwxrwx---   1 root supergroup     115933 2015-09-23 13:32 /tmp/hadoop-yarn/staging/history/done/2015/09/23/000000/job_1442986230207_0001_conf.xml
-rwxrwx---   1 root supergroup      33720 2015-09-23 13:46 /tmp/hadoop-yarn/staging/history/done/2015/09/23/000000/job_1442987051344_0001-1442987116527-root-word+count-1442987193624-1-1-SUCCEEDED-root.default-1442987152826.jhist
-rwxrwx---   1 root supergroup     115933 2015-09-23 13:46 /tmp/hadoop-yarn/staging/history/done/2015/09/23/000000/job_1442987051344_0001_conf.xml
这下就看到了目录下保存的是.jhis文件和xml配置文件,然后重点关注.jhist文件如何保存job信息,很显然每个.jhist文件对应1个Job.用cat命令查看

{"type":"JOB_FINISHED","event":{"org.apache.hadoop.mapreduce.jobhistory.JobFinished":{"jobid":"job_1442921980247_0001","finishTime":1442977507137,"finishedMaps":1,"finishedReduces":1,"failedMaps":0,"failedReduces":0,"totalCounters":{"name":"TOTAL_COUNTERS","groups":[{"name":"org.apache.hadoop.mapreduce.FileSystemCounter","displayName":"File System Counters","counts":[{"name":"FILE_BYTES_READ","displayName":"FILE: Number of bytes read","value":10992}
可以看到,里面用json字符串的格式保存了很多counter信息,而这些信息就是JobHistory上面所显示的内容.


JobHistory文件信息获取

OK,上一步骤了解了存储文件的存储位置后,我们面临的问题就是如何取出来,最好转化为对象的形式进行值的获取.非常幸运的是在HistoryFileManager中,恰好有对HistoryFileInfo到Job的转换方法

/**
     * Parse a job from the JobHistoryFile, if the underlying file is not going
     * to be deleted.
     * 
     * @return the Job or null if the underlying file was deleted.
     * @throws IOException
     *           if there is an error trying to read the file.
     */
    public synchronized Job loadJob() throws IOException {
      return new CompletedJob(conf, jobIndexInfo.getJobId(), historyFile,
          false, jobIndexInfo.getUser(), this, aclsMgr);
    }
而且还能控制是否要加载task的数据信息.我对照JobHistory此方面的代码,对其进行模仿,写了一个抓取程序.主工具代码如下

package org.apache.hadoop.mapreduce.v2.hs.tool;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileContext;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.fs.RemoteIterator;
import org.apache.hadoop.fs.UnsupportedFileSystemException;
import org.apache.hadoop.mapreduce.v2.api.records.TaskId;
import org.apache.hadoop.mapreduce.v2.app.job.Job;
import org.apache.hadoop.mapreduce.v2.app.job.Task;
import org.apache.hadoop.mapreduce.v2.hs.tool.HistoryFileInfo;
import org.apache.hadoop.mapreduce.v2.jobhistory.FileNameIndexUtils;
import org.apache.hadoop.mapreduce.v2.jobhistory.JobHistoryUtils;
import org.apache.hadoop.mapreduce.v2.jobhistory.JobIndexInfo;

import com.google.common.annotations.VisibleForTesting;

public class HSTool {
	private static String DONE_BEFORE_SERIAL_TAIL = JobHistoryUtils
			.doneSubdirsBeforeSerialTail();

	String jobHistoryPath;
	Path doneDirPrefixPath;
	FileContext doneDirFc;

	ArrayList<HistoryFileInfo> historyFileInfos;

	public HSTool(String jobHistoryPath) {
		this.jobHistoryPath = jobHistoryPath;

		this.historyFileInfos = new ArrayList<HistoryFileInfo>();
	}

	public void getHistoryData() {
		String doneDirPrefix = jobHistoryPath;
		List<FileStatus> fileStatus;

		try {
			doneDirPrefixPath = FileContext.getFileContext(new Configuration())
					.makeQualified(new Path(doneDirPrefix));

			doneDirFc = FileContext.getFileContext(doneDirPrefixPath.toUri());
			doneDirFc.setUMask(JobHistoryUtils.HISTORY_DONE_DIR_UMASK);
		} catch (UnsupportedFileSystemException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		} catch (IllegalArgumentException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}

		fileStatus = null;
		try {
			fileStatus = findTimestampedDirectories();
		} catch (IOException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}

		if (fileStatus == null) {
			System.out.println("fileStatus is null");
		} else {
			System.out.println("dir fileStatus size is " + fileStatus.size());
			for (FileStatus fs : fileStatus) {
				System.out.println("child path name is "
						+ fs.getPath().getName());
				try {
					addDirectoryToJobListCache(fs.getPath());
				} catch (IOException e) {
					// TODO Auto-generated catch block
					e.printStackTrace();
				}
			}
		}

		System.out.println("history fileInfo size is "
				+ this.historyFileInfos.size());
		for (HistoryFileInfo hfi : this.historyFileInfos) {
			System.out.println("file jobId is " + hfi.getJobId());

			parseCompleteJob(hfi, true);
		}
	}

	/**
	 * Finds all history directories with a timestamp component by scanning the
	 * filesystem. Used when the JobHistory server is started.
	 * 
	 * @return list of history directories
	 */
	private List<FileStatus> findTimestampedDirectories() throws IOException {
		List<FileStatus> fsList = JobHistoryUtils.localGlobber(doneDirFc,
				doneDirPrefixPath, DONE_BEFORE_SERIAL_TAIL);
		return fsList;
	}

	private void addDirectoryToJobListCache(Path path) throws IOException {
		List<FileStatus> historyFileList = scanDirectoryForHistoryFiles(path,
				doneDirFc);
		for (FileStatus fs : historyFileList) {
			JobIndexInfo jobIndexInfo = FileNameIndexUtils.getIndexInfo(fs
					.getPath().getName());
			String confFileName = JobHistoryUtils
					.getIntermediateConfFileName(jobIndexInfo.getJobId());
			String summaryFileName = JobHistoryUtils
					.getIntermediateSummaryFileName(jobIndexInfo.getJobId());
			HistoryFileInfo fileInfo = new HistoryFileInfo(fs.getPath(),
					new Path(fs.getPath().getParent(), confFileName), new Path(
							fs.getPath().getParent(), summaryFileName),
					jobIndexInfo, true);
			historyFileInfos.add(fileInfo);
		}
	}

	protected List<FileStatus> scanDirectoryForHistoryFiles(Path path,
			FileContext fc) throws IOException {
		return scanDirectory(path, fc, JobHistoryUtils.getHistoryFileFilter());
	}

	@VisibleForTesting
	protected static List<FileStatus> scanDirectory(Path path, FileContext fc,
			PathFilter pathFilter) throws IOException {
		path = fc.makeQualified(path);
		List<FileStatus> jhStatusList = new ArrayList<FileStatus>();
		try {
			RemoteIterator<FileStatus> fileStatusIter = fc.listStatus(path);
			while (fileStatusIter.hasNext()) {
				FileStatus fileStatus = fileStatusIter.next();
				Path filePath = fileStatus.getPath();
				if (fileStatus.isFile() && pathFilter.accept(filePath)) {
					jhStatusList.add(fileStatus);
				}
			}
		} catch (FileNotFoundException fe) {
			System.out.println("Error while scanning directory " + path);
		}
		return jhStatusList;
	}

	private void parseCompleteJob(HistoryFileInfo hfi, boolean loadTask) {
		Job job;
		Task task;
		Map<TaskId, Task> taskInfos;

		job = null;
		try {
			job = hfi.loadJob(loadTask);
		} catch (IOException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}

		System.out.println("job info : job user is" + job.getUserName()
				+ ", map num is " + job.getTotalMaps() + ", job name is "
				+ job.getName() + ", start time is "
				+ job.getReport().getStartTime() + ", finish time is "
				+ job.getReport().getFinishTime());

		taskInfos = job.getTasks();
		System.out.println("job task total num is " + taskInfos.size());

		for (Map.Entry<TaskId, Task> entry : taskInfos.entrySet()) {
			task = entry.getValue();
			System.out.println("task id is " + task.getID()
					+ "task start time is " + task.getReport().getStartTime());
		}

	}
}

有了这把利器,相信会帮助大家更精准的发现Yarn集群中的问题.


全部代码的分析请点击链接https://github.com/linyiqun/yarn-jobhistory-crawler,后续将会继续更新YARN其他方面的代码分析。


参考源代码

Apach-hadoop-2.7.1(hadoop-mapreduce-client-hs)


posted @ 2020-01-12 19:09  回眸,境界  阅读(76)  评论(0编辑  收藏  举报