YARN源码分析(八)-----Reduce Shuffle过程分析

前言

在Hadoop Job的各个运行过程中,Shuffle阶段一直是一个比较神秘的过程.因为Shuffle阶段是隶属于Reduce过程的子过程,所以很多时候会被人所忽略.但是Shffle的整个过程在map reduce的整个过程中起到1个数据过渡的作用.正因为这个模块的重要性,Hadoop把这个模块设置成了可插拔的模块,用户可以根据自己应用的类型特点,定制自己的Shuffle模块代码.之前粗粗的阅读了一下相关的代码,于是写一些内容记录一下所学的.


Shuffle过程

Shuffle过程是Reduce阶段的初始操作阶段,过程简单的理解就是"远程数据拷贝"的过程,拷贝的目标数据源就是map的中间输出结果.reduce过程要想进一步进行处理操作,首先必须要做的就是拿到这批数据.一般map的中间结果文件是写出在当前的Task运行的节点上,所以reduce task拷贝数据会经过走网络的过程.而且如果这其中的量比较大的话,会消耗掉一定的网络带宽.


Shuffle模块源码分析

下面从源代码层面浅析此模块部分的代码,首先这个阶段是属于Reduce的过程中的,所以定位到Reduce Task的代码上.

@Override
  @SuppressWarnings("unchecked")
  public void run(JobConf job, final TaskUmbilicalProtocol umbilical)
    throws IOException, InterruptedException, ClassNotFoundException {
    job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());

    if (isMapOrReduce()) {
      copyPhase = getProgress().addPhase("copy");
      sortPhase  = getProgress().addPhase("sort");
      reducePhase = getProgress().addPhase("reduce");
    }
    ....
    
    // Initialize the codec
    codec = initCodec();
    RawKeyValueIterator rIter = null;
    ShuffleConsumerPlugin shuffleConsumerPlugin = null;
    
    Class combinerClass = conf.getCombinerClass();
    CombineOutputCollector combineCollector = 
      (null != combinerClass) ? 
     new CombineOutputCollector(reduceCombineOutputCounter, reporter, conf) : null;

    Class<? extends ShuffleConsumerPlugin> clazz =
          job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class);
					
    shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job);
    LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin);

    ShuffleConsumerPlugin.Context shuffleContext = 
      new ShuffleConsumerPlugin.Context(getTaskID(), job, FileSystem.getLocal(job), umbilical, 
                  super.lDirAlloc, reporter, codec, 
                  combinerClass, combineCollector, 
                  spilledRecordsCounter, reduceCombineInputCounter,
                  shuffledMapsCounter,
                  reduceShuffleBytes, failedShuffleCounter,
                  mergedMapOutputsCounter,
                  taskStatus, copyPhase, sortPhase, this,
                  mapOutputFile, localMapFiles);
    shuffleConsumerPlugin.init(shuffleContext);

    rIter = shuffleConsumerPlugin.run();
    ....
在Reduce Task中的run方法中能够看到shuffle部分的代码.首先是狗仔Shuffle上下文,然后是初始化操作,然后执行shuffle主操作.首先来看shuffle的上下文构造过程,他是一个内部类,在构造的过程中,传入了大量的变量参数,这些变量参数在Shuffle的过程中会被用到,下面是context中的变量定义,这些参数会由外部reduce task的参数传入到context上下文类中:

@InterfaceAudience.LimitedPrivate("mapreduce")
  @InterfaceStability.Unstable
  public static class Context<K,V> {
    private final org.apache.hadoop.mapreduce.TaskAttemptID reduceId;
    private final JobConf jobConf;
    private final FileSystem localFS;
    private final TaskUmbilicalProtocol umbilical;
    private final LocalDirAllocator localDirAllocator;
    private final Reporter reporter;
    private final CompressionCodec codec;
    private final Class<? extends Reducer> combinerClass;
    private final CombineOutputCollector<K, V> combineCollector;
    //与Shuffle过程相关计数器
    private final Counters.Counter spilledRecordsCounter;
    private final Counters.Counter reduceCombineInputCounter;
    private final Counters.Counter shuffledMapsCounter;
    private final Counters.Counter reduceShuffleBytes;
    private final Counters.Counter failedShuffleCounter;
    private final Counters.Counter mergedMapOutputsCounter;
    private final TaskStatus status;
    private final Progress copyPhase;
    private final Progress mergePhase;
    private final Task reduceTask;
    private final MapOutputFile mapOutputFile;
    private final Map<TaskAttemptID, MapOutputFile> localMapFiles;
然后构造完成上下文后,进行init操作,就是下面这行代码:

shuffleConsumerPlugin.init(shuffleContext);
shuffleConsumerPlugin是接口类,所以要找到具体的实现类,在Hadoop-2.7.1中,是名为Shuffle类.下面是进行的初始化操作

@InterfaceAudience.LimitedPrivate({"MapReduce"})
@InterfaceStability.Unstable
@SuppressWarnings({"unchecked", "rawtypes"})
public class Shuffle<K, V> implements ShuffleConsumerPlugin<K, V>, ExceptionReporter {
  private static final int PROGRESS_FREQUENCY = 2000;
  private static final int MAX_EVENTS_TO_FETCH = 10000;
  private static final int MIN_EVENTS_TO_FETCH = 100;
  private static final int MAX_RPC_OUTSTANDING_EVENTS = 3000000;
  
  private ShuffleConsumerPlugin.Context context;

  .....

  @Override
  public void init(ShuffleConsumerPlugin.Context context) {
    this.context = context;

    this.reduceId = context.getReduceId();
    this.jobConf = context.getJobConf();
    this.umbilical = context.getUmbilical();
    this.reporter = context.getReporter();
    this.metrics = new ShuffleClientMetrics(reduceId, jobConf);
    this.copyPhase = context.getCopyPhase();
    this.taskStatus = context.getStatus();
    this.reduceTask = context.getReduceTask();
    this.localMapFiles = context.getLocalMapFiles();
    
    scheduler = new ShuffleSchedulerImpl<K, V>(jobConf, taskStatus, reduceId,
        this, copyPhase, context.getShuffledMapsCounter(),
        context.getReduceShuffleBytes(), context.getFailedShuffleCounter());
    merger = createMergeManager(context);
  }
将之前上下文中的参数变量值赋值到自己的内部变量中.还需要关注一下,代码最后一行merge操作类.merge操作会在shuffle阶段尾声阶段进行.下面是执行主方法:

rIter = shuffleConsumerPlugin.run();
跳到具体的实现方法中:

@Override
  public RawKeyValueIterator run() throws IOException, InterruptedException {
    ......

    // Start the map-completion events fetcher thread
    final EventFetcher<K,V> eventFetcher = 
      new EventFetcher<K,V>(reduceId, umbilical, scheduler, this,
          maxEventsToFetch);
    eventFetcher.start();
    
    // Start the map-output fetcher threads
    boolean isLocal = localMapFiles != null;
    final int numFetchers = isLocal ? 1 :
      jobConf.getInt(MRJobConfig.SHUFFLE_PARALLEL_COPIES, 5);
    Fetcher<K,V>[] fetchers = new Fetcher[numFetchers];
    if (isLocal) {
      fetchers[0] = new LocalFetcher<K, V>(jobConf, reduceId, scheduler,
          merger, reporter, metrics, this, reduceTask.getShuffleSecret(),
          localMapFiles);
      fetchers[0].start();
    } else {
      for (int i=0; i < numFetchers; ++i) {
        fetchers[i] = new Fetcher<K,V>(jobConf, reduceId, scheduler, merger, 
                                       reporter, metrics, this, 
                                       reduceTask.getShuffleSecret());
        fetchers[i].start();
      }
    }
    ......
在Shuffle的主操作中可以看到,首先会根据map输出结果是否具有本地性,如果是在本地的,传入mapFile文件地址,然后都会新建若干个fetcher线程,来远程抓取数据.所以这里的核心操作应该是在Fetcher类中实现的.在Fetcher的start方法会执行拷贝的主要操作.

public void run() {
    try {
      while (!stopped && !Thread.currentThread().isInterrupted()) {
        MapHost host = null;
        try {
          // If merge is on, block
          merger.waitForResource();

          // Get a host to shuffle from
          host = scheduler.getHost();
          metrics.threadBusy();

          // Shuffle
          copyFromHost(host);
        } finally {
          if (host != null) {
            scheduler.freeHost(host);
            metrics.threadFree();            
          }
        }
      }
    } catch (InterruptedException ie) {
      return;
    } catch (Throwable t) {
      exceptionReporter.reportException(t);
    }
  }
进入copyFromHost方法,在方法的其实部分,先获取目标已经结束运行的map task列表.

  @VisibleForTesting
  protected void copyFromHost(MapHost host) throws IOException {
    // reset retryStartTime for a new host
    retryStartTime = 0;
    // Get completed maps on 'host'
    List<TaskAttemptID> maps = scheduler.getMapsForHost(host);
    ....
也就是说,后面的Shuffle阶段就会从这些map task运行所在的节点上进行fetch data的操作.在拷贝操作之前,维护一个remaining剩余变量操作

// List of maps to be fetched yet
    Set<TaskAttemptID> remaining = new HashSet<TaskAttemptID>(maps);
接着首先根据变量获取输入流数据,判断是否在map task的host上是否真正存在数据

 // Construct the url and connect
    URL url = getMapOutputURL(host, maps);
    DataInputStream input = openShuffleUrl(host, remaining, url);
    if (input == null) {
      return;
    }
    
然后后面的操作进行循环的拷贝读取

TaskAttemptID[] failedTasks = null;
      while (!remaining.isEmpty() && failedTasks == null) {
        try {
          failedTasks = copyMapOutput(host, input, remaining, fetchRetryEnabled);
        } catch (IOException e) {
          //
          // Setup connection again if disconnected by NM
          connection.disconnect();
          // Get map output from remaining tasks only.
          url = getMapOutputURL(host, remaining);
          input = openShuffleUrl(host, remaining, url);
          if (input == null) {
            return;
          }
        }
      }
构造url,获得输入流数据,如果出现失败任务则就会退出循环,正常情况下,remain map数为空了,循环自然会退出.这里的拷贝操作细节又来到了copyMapOutput中.

在拷贝操作之前,会进行拷贝总大小的计算,从输入流中读取.

private TaskAttemptID[] copyMapOutput(MapHost host,
                                DataInputStream input,
                                Set<TaskAttemptID> remaining,
                                boolean canRetry) throws IOException {
    MapOutput<K,V> mapOutput = null;
    TaskAttemptID mapId = null;
    long decompressedLength = -1;
    long compressedLength = -1;
    
    try {
      long startTime = Time.monotonicNow();
      int forReduce = -1;
      //Read the shuffle header
      try {
        ShuffleHeader header = new ShuffleHeader();
        header.readFields(input);
        mapId = TaskAttemptID.forName(header.mapId);
        compressedLength = header.compressedLength;
        decompressedLength = header.uncompressedLength;
        forReduce = header.forReduce;
        .....
然后会根据计算过的拷贝数据量的大小,判断将数据拷贝到内存中还是磁盘中,然后返回相应的输出对象.

// Do some basic sanity verification
      if (!verifySanity(compressedLength, decompressedLength, forReduce,
          remaining, mapId)) {
        return new TaskAttemptID[] {mapId};
      }
      
      if(LOG.isDebugEnabled()) {
        LOG.debug("header: " + mapId + ", len: " + compressedLength + 
            ", decomp len: " + decompressedLength);
      }
      
      // Get the location for the map output - either in-memory or on-disk
      try {
        mapOutput = merger.reserve(mapId, decompressedLength, id);
        .... 
reserve方法就是主要进行判断操作的

@Override
  public synchronized MapOutput<K,V> reserve(TaskAttemptID mapId, 
                                             long requestedSize,
                                             int fetcher
                                             ) throws IOException {
    if (!canShuffleToMemory(requestedSize)) {
      LOG.info(mapId + ": Shuffling to disk since " + requestedSize + 
               " is greater than maxSingleShuffleLimit (" + 
               maxSingleShuffleLimit + ")");
      return new OnDiskMapOutput<K,V>(mapId, reduceId, this, requestedSize,
                                      jobConf, mapOutputFile, fetcher, true);
    }
    
    .....
    
    if (usedMemory > memoryLimit) {
      LOG.debug(mapId + ": Stalling shuffle since usedMemory (" + usedMemory
          + ") is greater than memoryLimit (" + memoryLimit + ")." + 
          " CommitMemory is (" + commitMemory + ")"); 
      return null;
    }
    
    // Allow the in-memory shuffle to progress
    LOG.debug(mapId + ": Proceeding with shuffle since usedMemory ("
        + usedMemory + ") is lesser than memoryLimit (" + memoryLimit + ")."
        + "CommitMemory is (" + commitMemory + ")"); 
    return unconditionalReserve(mapId, requestedSize, true);
  }

/**
   * Unconditional Reserve is used by the Memory-to-Memory thread
   * @return
   */
  private synchronized InMemoryMapOutput<K, V> unconditionalReserve(
      TaskAttemptID mapId, long requestedSize, boolean primaryMapOutput) {
    usedMemory += requestedSize;
    return new InMemoryMapOutput<K,V>(jobConf, mapId, this, (int)requestedSize,
                                      codec, primaryMapOutput);
  }
返回的对象有2种,1种是拷贝到内存中InMemoryMapOutput,还有1种是磁盘上的,OnDiskMapOutput.目标确定之后,进行Shuffle远程拷贝操作

 ....
      // The codec for lz0,lz4,snappy,bz2,etc. throw java.lang.InternalError
      // on decompression failures. Catching and re-throwing as IOException
      // to allow fetch failure logic to be processed
      try {
        // Go!
        LOG.info("fetcher#" + id + " about to shuffle output of map "
            + mapOutput.getMapId() + " decomp: " + decompressedLength
            + " len: " + compressedLength + " to " + mapOutput.getDescription());
        mapOutput.shuffle(host, is, compressedLength, decompressedLength,
            metrics, reporter);
      } catch (java.lang.InternalError e) {
        LOG.warn("Failed to shuffle for fetcher#"+id, e);
        throw new IOException(e);
      }
最后在这些操作完成之后,为了防止内存中的空间被占用过大,或者磁盘中的小文件数太多,会进行一次merge和并操作,在最后的Shuffle类的merge.close()方法中会调用.

// Start the map-output fetcher threads
    boolean isLocal = localMapFiles != null;
    final int numFetchers = isLocal ? 1 :
      jobConf.getInt(MRJobConfig.SHUFFLE_PARALLEL_COPIES, 5);
    Fetcher<K,V>[] fetchers = new Fetcher[numFetchers];
    if (isLocal) {
      fetchers[0] = new LocalFetcher<K, V>(jobConf, reduceId, scheduler,
          merger, reporter, metrics, this, reduceTask.getShuffleSecret(),
          localMapFiles);
      fetchers[0].start();
    } else {
      for (int i=0; i < numFetchers; ++i) {
        fetchers[i] = new Fetcher<K,V>(jobConf, reduceId, scheduler, merger, 
                                       reporter, metrics, this, 
                                       reduceTask.getShuffleSecret());
        fetchers[i].start();
      }
    }
    
    .....
    // Finish the on-going merges...
    RawKeyValueIterator kvIter = null;
    try {
      kvIter = merger.close();
    } catch (Throwable e) {
      throw new ShuffleError("Error while doing final merge " , e);
    }

@Override
  public RawKeyValueIterator close() throws Throwable {
    // Wait for on-going merges to complete
    if (memToMemMerger != null) { 
      memToMemMerger.close();
    }
    inMemoryMerger.close();
    onDiskMerger.close();
    
    List<InMemoryMapOutput<K, V>> memory = 
      new ArrayList<InMemoryMapOutput<K, V>>(inMemoryMergedMapOutputs);
    inMemoryMergedMapOutputs.clear();
    memory.addAll(inMemoryMapOutputs);
    inMemoryMapOutputs.clear();
    List<CompressAwarePath> disk = new ArrayList<CompressAwarePath>(onDiskMapOutputs);
    onDiskMapOutputs.clear();
    return finalMerge(jobConf, rfs, memory, disk);
  }
OK,以上操作的结束,就是整个Reduce Shuffle的过程操作.下面是一张简易的流程分析图


其他方面代码的分析请点击链接https://github.com/linyiqun/hadoop-yarn,后续将会继续更新YARN其他方面的代码分析。


参考源码

Apach-hadoop-2.7.1(hadoop-hdfs-project)

posted @ 2020-01-12 19:09  回眸,境界  阅读(137)  评论(0编辑  收藏  举报