Hadoop关键任务Job资源隔离方案

前言

在目前的Hadoop集群中,对于所有的用户Job来说,态度都是一致的,也就是说,"来者不拒",但是如果集群的平均Job运行数量上去的,就免不了会出现资源的滥用现象了,之前介绍过几篇相应的文章,不过主题都是偏向于监控问题的,并不是解决方案.比如说自定义Hive Sql Job分析工具,还有这篇文章Hadoop异常Task发现分析, 重新回到主题,一般如果一个稍微到了一定规模的程度时,应该会出现所谓的"关键任务",而且这些任务有一些共同点:

1.一般会在第二天凌晨跑,而且从0点开始,一般在早上8,9点结束,方便第二天上班时查阅结果.

2.处理的前一天的数据,而且量比一般的Job大许多.

3.处理的数据一般是敏感的数据,比如涉及到金融分析,pv,uv,gmv等类似这样关键的数据.

而且这样的任务必须能在第二天早上的时候完成掉,因为许多运营的同事会看这些数据进行第二天的工作.于是这样的任务被称为"关键任务".解决这种类似的问题,解决的办法就一个,资源隔离,而在目前Yarn的解决办法中,一般可以想到的是独立分队列,分资源使用量,但是这有一点不好,就是队列分出去了,就会持续占有理论上的最大资源,如果你打开了资源抢夺功能,又会造成不同队列间的竞争,而Job与Job直接的资源竞争势必会影响到Job的执行效率.于是仔细想想,我们是不是可以在规定的时段内只让某些关键的Job运行,直接拒绝掉其他用户提交的Job,答案是可以的.


方案设想

上述的方案设想是很完美的,比如我的关键任务一般是在0点到9点钟跑的,而且必须在9点前出结果的,所以这段时间内,我将拒绝掉,什么张三啊,李四啊这些普通用户提交的Job.资源只给关键用户用,我就可以彻彻底底无须考虑资源抢占的因素了.如何去限制呢,如果你此时考虑如何在复杂的Yarn的层面上去考虑的话,不出3天,5天绝对不会想到完整的解决办法的,不是我贬低大家的能力,因为YARN自身内部的逻辑真的没那么简单.所以我反其道而行,在job-clien端做限制,在job的提交操作中进行限制.如果出现不满足的job出现,直接拒绝提交,Job连进都别想进入到系统中.实现大体思路清晰后,我们要想针对上述的这个需求,我们要有哪些限制条件,1个是用户,还有1个就是时间,


方案实现

首先要能找到job-client端的代码,在hadoop-mapreduce--client-core的Job类中.要更改代码的方法就是平常我们写MR Job时候经常会调用的方法Job.waitForCompletion().首先在更改之前,要先定义几个新的配置属性,因为这是我们新加的功能,限制用户和时间当然是要做出可配的吗,总不能写死在代码中吧.

@InterfaceAudience.Private
public interface MRConfig {
  ...

  public static final String MAPREDUCE_LIMIT_EXECUTED_ENABLED =
      "mapreduce.limit-executed.enabled";
  public static final String DEFAULT_MAPREDUCE_LIMIT_EXECUTED_ENABLED =
      "false";

  public static final String MAPREDUCE_LIMIT_EXECUTED_USERS =
      "mapreduce.limit-executed.users";
  public static final String MAPREDUCE_LIMIT_EXECUTED_HOURS =
      "mapreduce.limit-executed.hours";
}
正如上面名称上显示的那样,1个是是否启用配置,1个是限制执行用户配置,1个是限制执行时间配置,这些配置属性将会以","逗号的形式隔开.然后重新回到job类中.首先在变量中新加1个标记属性,标识此Job是否能被执行:

private boolean canExecuted;
然后定位到job的waitForCompletion()方法中:

/**
   * Submit the job to the cluster and wait for it to finish.
   * @param verbose print the progress to the user
   * @return true if the job succeeded
   * @throws IOException thrown if the communication with the 
   *         <code>JobTracker</code> is lost
   */
  public boolean waitForCompletion(boolean verbose
                                   ) throws IOException, InterruptedException,
                                            ClassNotFoundException {
    if (state == JobState.DEFINE) {
      submit();
    }
    //增加是否可执行判断
    if (!canExecuted) {
      this.status = new JobStatus();
      this.status.setState(State.FAILED);
      return false;
    }

    if (verbose) {
      monitorAndPrintJob();
    } else {
      // get the completion poll interval from the client.
      int completionPollIntervalMillis = 
        Job.getCompletionPollInterval(cluster.getConf());
      while (!isComplete()) {
        try {
          Thread.sleep(completionPollIntervalMillis);
        } catch (InterruptedException ie) {
        }
      }
    }
    return isSuccessful();
  }
如果Job被判断不可执行,直接返回failed的执行状态.而具体的是否可执行是在submit()方法中进行的操作.

/**
   * Submit the job to the cluster and return immediately.
   * @throws IOException
   */
  public void submit() 
         throws IOException, InterruptedException, ClassNotFoundException {
    //在此处进行Job是否可执行的判断
    canExecuted = jobCanBeExecuted();
    if (!canExecuted) {
      //如果不可执行,直接返回结果
      return;
    }

    ensureState(JobState.DEFINE);
    setUseNewAPI();
    connect();
    final JobSubmitter submitter = 
        getJobSubmitter(cluster.getFileSystem(), cluster.getClient());
    status = ugi.doAs(new PrivilegedExceptionAction<JobStatus>() {
      public JobStatus run() throws IOException, InterruptedException, 
      ClassNotFoundException {
        return submitter.submitJobInternal(Job.this, cluster);
      }
    });
    state = JobState.RUNNING;
    LOG.info("The url to track the job: " + getTrackingURL());
   }
于是又跳到了关键的jobCanBeExecuted()方法.

  private boolean jobCanBeExecuted() {
    boolean isLimitExecutedEnabled;
    boolean isAcceptedUser;
    boolean isAcceptedHour;
    String usersConfValue;
    String hoursConfValue;
    String curHour;
    String[] acceptedUsers;
    String[] acceptedHours;

    isLimitExecutedEnabled =
        Boolean.parseBoolean(conf.get(
            MRConfig.MAPREDUCE_LIMIT_EXECUTED_ENABLED,
            MRConfig.DEFAULT_MAPREDUCE_LIMIT_EXECUTED_ENABLED));
    usersConfValue = conf.get(MRConfig.MAPREDUCE_LIMIT_EXECUTED_USERS);
    hoursConfValue = conf.get(MRConfig.MAPREDUCE_LIMIT_EXECUTED_HOURS);

    if (!isLimitExecutedEnabled) {
      //如果没有启用此功能,则默认都是可接受的用户和时间
      isAcceptedUser = true;
      isAcceptedHour = true;
    } else if (usersConfValue != null) {
      //如果出现用户属性不为空,则马上设置用户为不可接受
      isAcceptedUser = false;

      acceptedUsers = usersConfValue.split(",");
      for (String s : acceptedUsers) {
        if (s.equals(conf.get(JobContext.USER_NAME))) {
          //将当前用户与可接受用户进行对比
          isAcceptedUser = true;
          break;
        }
      }

      //时间小时段的比较同理
      if (hoursConfValue != null) {
        isAcceptedHour = false;

        acceptedHours = hoursConfValue.split(",");
        curHour = getCurrentHoure();
        for (String s : acceptedHours) {
          if (s.equals(curHour)) {
            isAcceptedHour = true;
            break;
          }
        }
      } else {
        isAcceptedHour = true;
      }
    } else {
      isAcceptedUser = true;
      isAcceptedHour = true;
    }

    //最后返回2者的并结果,只有2个都true才能是job被执行
    return (isAcceptedUser && isAcceptedHour);
  }
其中的逻辑有不明白的地方可以详细的看注释,在这里就不解释了.最后还有1个地方要改,

  /**
   * Returns the current state of the Job.
   * 
   * @return JobStatus#State
   * @throws IOException
   * @throws InterruptedException
   */
  public JobStatus.State getJobState() 
      throws IOException, InterruptedException {
    if (canExecuted) {
      ensureState(JobState.RUNNING);
      updateStatus();
    }

    return status.getState();
  }
要加上canExecuted的判断,否则会抛异常,因为普通的Job必须要保证之前的状态是JobState.RUNNING.


程序测试

因为时间的关系,我就没有在测试的集群中跑这个新的功能,就写了1个测试案例,总共分为4个

1.不开启限制执行功能,普通用户能够顺利通过测试,Job执行状态为成功.

2.开启限制执行功能,设置执行用户,Job的所属用户还是普通用户,Job运行失败.

3.开启限制执行功能,设置执行用户,设置执行时间-1(表明Job在执行时间的选择上将必定被拒绝),Job的所属用户是可接受用户,Job运行失败.

4.开启限制执行功能,设置执行用户,设置执行时间0-23(表明Job在执行时间的选择上弊端成功),Job的所属用户是可接受用户,Job运行成功.

测试的testcase:

@Test(timeout = 300000)
  public void testSleepJobWithLimitExecuted() throws Exception {
    boolean exitCode;
    String acceptedUser;
    String normalUser;
    Job job;
    Configuration sleepConf;

    if (!(new File(MiniMRYarnCluster.APPJAR)).exists()) {
      LOG.info("MRAppJar " + MiniMRYarnCluster.APPJAR
          + " not found. Not running test.");
      return;
    }

    acceptedUser = "acceptedUser";
    normalUser = "normalUser";
    sleepConf = new Configuration(mrCluster.getConfig());
    // set master address to local to test that local mode applied iff framework
    // == local
    sleepConf.set(MRConfig.MASTER_ADDRESS, "local");
    SleepJob sleepJob = new SleepJob();
    sleepJob.setConf(sleepConf);

    // don't enable limit-executed function, the normal user can be allowed to
    // execute job.
    sleepJob = new SleepJob();
    sleepJob.setConf(sleepConf);
    // job with 3 maps (1s) and numReduces reduces (5s), 1 "record" each:
    job = sleepJob.createJob(3, numSleepReducers, 1000, 1, 5000, 1);
    job.setUser(normalUser);
    job.addFileToClassPath(APP_JAR); // The AppMaster jar itself.
    job.setJarByClass(SleepJob.class);
    job.setMaxMapAttempts(1);
    job.submit();
    exitCode = job.waitForCompletion(true);
    Assert.assertTrue(exitCode);
    Assert.assertEquals(JobStatus.State.SUCCEEDED, job.getJobState());

    // add the limit-executed users and the normal user of the job will be
    // failed.
    sleepConf.set(MRConfig.DEFAULT_MAPREDUCE_LIMIT_EXECUTED_ENABLED, "true");
    sleepConf.set(MRConfig.MAPREDUCE_LIMIT_EXECUTED_USERS, acceptedUser);
    sleepJob = new SleepJob();
    sleepJob.setConf(sleepConf);
    // job with 3 maps (1s) and numReduces reduces (5s), 1 "record" each:
    job = sleepJob.createJob(3, numSleepReducers, 1000, 1, 5000, 1);
    job.setUser(normalUser);
    job.addFileToClassPath(APP_JAR); // The AppMaster jar itself.
    job.setJarByClass(SleepJob.class);
    job.setMaxMapAttempts(1);
    job.submit();
    exitCode = job.waitForCompletion(true);
    Assert.assertFalse(exitCode);
    Assert.assertEquals(JobStatus.State.FAILED, job.getJobState());

    // change the job user to accptedUser, the job will be succeed executed;
    sleepConf.set(MRConfig.DEFAULT_MAPREDUCE_LIMIT_EXECUTED_ENABLED, "true");
    sleepConf.set(MRConfig.MAPREDUCE_LIMIT_EXECUTED_USERS, acceptedUser);
    sleepJob = new SleepJob();
    sleepJob.setConf(sleepConf);
    // job with 3 maps (1s) and numReduces reduces (5s), 1 "record" each:
    job = sleepJob.createJob(3, numSleepReducers, 1000, 1, 5000, 1);
    job.setUser(acceptedUser);
    job.addFileToClassPath(APP_JAR); // The AppMaster jar itself.
    job.setJarByClass(SleepJob.class);
    job.setMaxMapAttempts(1);
    job.submit();
    exitCode = job.waitForCompletion(true);
    Assert.assertTrue(exitCode);
    Assert.assertEquals(JobStatus.State.SUCCEEDED, job.getJobState());

    // add limit-executed hours as -1, so the job will be failed again
    sleepConf.set(MRConfig.DEFAULT_MAPREDUCE_LIMIT_EXECUTED_ENABLED, "true");
    sleepConf.set(MRConfig.MAPREDUCE_LIMIT_EXECUTED_USERS, acceptedUser);
    sleepConf.set(MRConfig.MAPREDUCE_LIMIT_EXECUTED_HOURS, "-1");
    sleepJob = new SleepJob();
    sleepJob.setConf(sleepConf);
    // job with 3 maps (1s) and numReduces reduces (5s), 1 "record" each:
    job = sleepJob.createJob(3, numSleepReducers, 1000, 1, 5000, 1);
    job.setUser(acceptedUser);
    job.addFileToClassPath(APP_JAR); // The AppMaster jar itself.
    job.setJarByClass(SleepJob.class);
    job.setMaxMapAttempts(1);
    job.submit();
    exitCode = job.waitForCompletion(true);
    Assert.assertFalse(exitCode);
    Assert.assertEquals(JobStatus.State.FAILED, job.getJobState());

    // change the limit-hours as every hour of day the job will be succeed
    sleepConf.set(MRConfig.DEFAULT_MAPREDUCE_LIMIT_EXECUTED_ENABLED, "true");
    sleepConf.set(MRConfig.MAPREDUCE_LIMIT_EXECUTED_USERS, acceptedUser);
    sleepConf.set(MRConfig.MAPREDUCE_LIMIT_EXECUTED_HOURS,
        "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23");
    sleepJob = new SleepJob();
    sleepJob.setConf(sleepConf);
    // job with 3 maps (10s) and numReduces reduces (5s), 1 "record" each:
    job = sleepJob.createJob(3, numSleepReducers, 1000, 1, 5000, 1);
    job.setUser(acceptedUser);
    job.addFileToClassPath(APP_JAR); // The AppMaster jar itself.
    job.setJarByClass(SleepJob.class);
    job.setMaxMapAttempts(1);
    job.submit();
    exitCode = job.waitForCompletion(true);
    Assert.assertTrue(exitCode);
    Assert.assertEquals(JobStatus.State.SUCCEEDED, job.getJobState());
  }
这个测试我已经跑通过了,但是目前测试还不全,我还不确定有没有其他的不是走waitForComplete()方法进行Job提交的方式的,可能测试的会不全.


开源社区

此相关的新功能我已经提交到开源社区,Issue链接:https://issues.apache.org/jira/browse/MAPREDUCE-6548

与本文主题相关的另一个Issue链接:https://issues.apache.org/jira/browse/YARN-1051


其他

我的监控分析工具集:https://github.com/linyiqun/yarn-jobhistory-crawler

posted @ 2020-01-12 19:09  回眸,境界  阅读(85)  评论(0编辑  收藏  举报