HDFS邻近信息块BlockInfoContiguous

前言

在HDFS中,数据的存储是以Block块的形式进行组织的.而每个块的默认副本数是3个,所以一般每个在HDFS中会存在3个相同的block块分布在不同的DataNode节点之上.所以在每个DataNode上,会存储着大量的block,那么这些块是如何被组织,联系起来的的呢,HDFS在添加块,移除块时是如何操作这些block块以及对应的关联信息呢,链表?数组?HashMap?答案就在BlockInfoContiguous这个类中.


BlockInfoContiguous邻近信息块

这个类不是在所有的Hadoop版本中都有,在最新的hadoop-trunk代码中这个类已经不怎么使用了,所以这里我要说明一下我学习使用的版本是hadoop-2.7.1.在此版本中,BlockInfoContiguous就是用来联系寻找block块的直接信息类.在官方的源码中对BlockInfoContiguous的注释为:

/**
 * BlockInfo class maintains for a given block
 * the {@link INodeFile} it is part of and datanodes where the replicas of 
 * the block are stored.
 * BlockInfo class maintains for a given block
 * the {@link BlockCollection} it is part of and datanodes where the replicas of 
 * the block are stored.
 */
@InterfaceAudience.Private
public class BlockInfoContiguous extends Block
    implements LightWeightGSet.LinkedElement {

在BlockInfoContiguous类中,有2个内部关键的对象信息BlockCollection和triplets.前者保存了类似副本数,副本位置等的一些信息,而triplets对象数组的设计则是本文的一个重点.所以下面要独立出篇幅来详细的分析triplets的设计结构和思想.


triplets对象数组

triplets对象起始初始化是若干长度的Object对象,但是在赋值的时候,会存储2类的对象.此对象的源码注释如下:

  /**
   * This array contains triplets of references. For each i-th storage, the
   * block belongs to triplets[3*i] is the reference to the
   * {@link DatanodeStorageInfo} and triplets[3*i+1] and triplets[3*i+2] are
   * references to the previous and the next blocks, respectively, in the list
   * of blocks belonging to this storage.
   * 
   * Using previous and next in Object triplets is done instead of a
   * {@link LinkedList} list to efficiently use memory. With LinkedList the cost
   * per replica is 42 bytes (LinkedList#Entry object per replica) versus 16
   * bytes using the triplets.
   */
  private Object[] triplets;
上述的注释解释可主要解释为下面几点:

1.对于当前block块的信息,block存在于哪些data-storage中,假如存储于i个节点,则triplets对象数组大小就是3 * i个,一般存储的节点数视副本系数而定.

2.对triplets每3个为一单位的数组来说,triplets[3 * i]保存的是data-storage信息,triplets[3 * i + 1]保存的是此data-storage中previous前一个block对象的信息,triplets[3 * i + 2]保存的则是后一块的block的信息,而保存block信息对象的类同样是BlockInfoContiguous.

所以你可以稍稍的想象一下,这其实是一个"巨大的链表".但是他为了更高效的使用内存没有用jdk自带的LinkList这样的链表结构.介绍triplets的结构重新再来看看BlockInfoContiguous的结构组成,下面是一张结构图:


DatanodeStorageInfo1,2,3是当前block存储的节点,所以triplets的长度根据副本数进行初始化:

/**
   * Construct an entry for blocksmap
   * @param replication the block's replication factor
   */
  public BlockInfoContiguous(short replication) {
    this.triplets = new Object[3*replication];
    this.bc = null;
  }

每个data-storage上会存储大量的block块,于是通过块的next块或previous块,可以遍历完整个节点上的所有块.所有在每个DataNodeStorageInfo中,所持有的block块的结构可以用下图进行展示:


这里的head头block块,对应的是DataNodeStorage中的blacklist对象:

private volatile BlockInfoContiguous blockList = null;

上面的同一个节点中的block块与block块之间的关系放大了的表示如下图所示:


data-node上的关于block块的操作都会在他所维护的block列表中进行操作.


BlockInfoContiguous的链表操作

data-node上的block块的添加删除动作对照过来就是BlockInfoContiguous的链表操作.其中的操作主要分为2类,addBlock块的添加,还有一个就是removeBlock操作.这2个方法都是定义在DataNodeStorageInfo中,最终映射到的block的链表操作方法是listInsert和listRemove,下面主要详细分析一下这2个方法:

listInsert

listInsert的操作效果是往对应节点链表中添加一个block块,触发此操作的原始方法是DataNodeStorage的addBlock方法,如下:

  public AddBlockResult addBlock(BlockInfoContiguous b) {
    // First check whether the block belongs to a different storage
    // on the same DN.
    AddBlockResult result = AddBlockResult.ADDED;
    DatanodeStorageInfo otherStorage =
        b.findStorageInfo(getDatanodeDescriptor());

    if (otherStorage != null) {
      if (otherStorage != this) {
        // The block belongs to a different storage. Remove it first.
        otherStorage.removeBlock(b);
        result = AddBlockResult.REPLACED;
      } else {
        // The block is already associated with this storage.
        return AddBlockResult.ALREADY_EXIST;
      }
    }

    // add to the head of the data-node list
    b.addStorage(this);
blockList = b.listInsert(blockList, this); numBlocks++; return result; }在这个方法中,主要关注末尾的2个方法,b.addStorage和b.listInsert. b.addStorage的意思是在新增的block块中赋值当前的节点信息,因为此block块被写入到当前节点中,要把节点信息写入block自身维护的链表信息中.

  /**
   * Add a {@link DatanodeStorageInfo} location for a block
   */
  boolean addStorage(DatanodeStorageInfo storage) {
    // find the last null node
    //triplets数组扩容1个单位的data-storage,相当于扩充3个数组
    int lastNode = ensureCapacity(1);
    //设置datanode信息对象到triplets[3 * lastNode]中
    setStorageInfo(lastNode, storage);
    //设置下一block块为null到triplets[3 * lastNode + 2]
    setNext(lastNode, null);
  //设置前一block块为null到triplets[3 * lastNode + 1]
    setPrevious(lastNode, null);
    return true;
  }
  private void setStorageInfo(int index, DatanodeStorageInfo storage) {
    assert this.triplets != null : "BlockInfo is not initialized";
    assert index >= 0 && index*3 < triplets.length : "Index is out of bound";
    triplets[index*3] = storage;
  }

  /**
   * Return the previous block on the block list for the datanode at
   * position index. Set the previous block on the list to "to".
   *
   * @param index - the datanode index
   * @param to - block to be set to previous on the list of blocks
   * @return current previous block on the list of blocks
   */
  private BlockInfoContiguous setPrevious(int index, BlockInfoContiguous to) {
    assert this.triplets != null : "BlockInfo is not initialized";
    assert index >= 0 && index*3+1 < triplets.length : "Index is out of bound";
    BlockInfoContiguous info = (BlockInfoContiguous)triplets[index*3+1];
    triplets[index*3+1] = to;
    return info;
  }
另外一个操作就是把此块的信息加入到当前维护的链表中,将head头节点blocklist以参数的形式传入,然后将返回值重新赋值给头节点,相当于是进行了1次头节点的更新.

blockList = b.listInsert(blockList, this);
  /**
   * Insert this block into the head of the list of blocks 
   * related to the specified DatanodeStorageInfo.
   * If the head is null then form a new list.
   * @return current block as the new head of the list.
   */
  BlockInfoContiguous listInsert(BlockInfoContiguous head,
      DatanodeStorageInfo storage) {
    //在当前block中寻找对应data-storage的下标
    int dnIndex = this.findStorageInfo(storage);
    assert dnIndex >= 0 : "Data node is not found: current";
    assert getPrevious(dnIndex) == null && getNext(dnIndex) == null : 
            "Block is already in the list and cannot be inserted.";
    this.setPrevious(dnIndex, null);
    //将当前的下一节点指向head头节点
    this.setNext(dnIndex, head);
    if(head != null)
      //将头节点的前一节点指向当前节点
      head.setPrevious(head.findStorageInfo(storage), this);
    //返回当前节点为新的头节点
    return this;
  }
block在之前的addStorage中设置的null会在此操作中连向head头节点.用图形展示的效果如下:



listRemove

另外一个对应的操作就是data-storage节点的removeBlock动作.在节点上执行了删除block动作之后,会触发这个链表操作.

 public boolean removeBlock(BlockInfoContiguous b) {
    blockList = b.listRemove(blockList, this);
    if (b.removeStorage(this)) {
      numBlocks--;
      return true;
    } else {
      return false;
    }
  }
同样会有2个步骤,从链表中移除掉目标块,第二个从目标块中自身中释放掉对于节点的信息.首先来看listRemove将当前目标block块清楚,

  /**
   * Remove this block from the list of blocks 
   * related to the specified DatanodeStorageInfo.
   * If this block is the head of the list then return the next block as 
   * the new head.
   * @return the new head of the list or null if the list becomes
   * empy after deletion.
   */
  BlockInfoContiguous listRemove(BlockInfoContiguous head,
      DatanodeStorageInfo storage) {
    if(head == null)
      return null;
    int dnIndex = this.findStorageInfo(storage);
    if(dnIndex < 0) // this block is not on the data-node list
      return head;

    //将对应的当前节点信息置为空
    BlockInfoContiguous next = this.getNext(dnIndex);
    BlockInfoContiguous prev = this.getPrevious(dnIndex);
    this.setNext(dnIndex, null);
    this.setPrevious(dnIndex, null);
    //将前后节点联系关联
    if(prev != null)
      prev.setNext(prev.findStorageInfo(storage), next);
    if(next != null)
      next.setPrevious(next.findStorageInfo(storage), prev);
    if(this == head)  // removing the head
      head = next;
    return head;
  }
用图形展示的效果如下图所示:

removeBlock之前:


removeBlock之后:


还有一个操作是将目标block块中的相关data-storage的信息设置为null.

  /**
   * Remove {@link DatanodeStorageInfo} location for a block
   */
  boolean removeStorage(DatanodeStorageInfo storage) {
    int dnIndex = findStorageInfo(storage);
    if(dnIndex < 0) // the node is not found
      return false;
    assert getPrevious(dnIndex) == null && getNext(dnIndex) == null : 
      "Block is still in the list and must be removed first.";
    // find the last not null node
    int lastNode = numNodes()-1; 
    // replace current node triplet by the lastNode one 
    setStorageInfo(dnIndex, getStorageInfo(lastNode));
    setNext(dnIndex, getNext(lastNode)); 
    setPrevious(dnIndex, getPrevious(lastNode)); 
    // set the last triplet to null
    setStorageInfo(lastNode, null);
    setNext(lastNode, null); 
    setPrevious(lastNode, null); 
    return true;
  }
这里的动作是将lastNode最后一个节点的位置替换到当前要删除的位置,并将原最后节点的置为空.这是为了方便后面的ensureCapacity动态扩充triplets数组的大小,无需重新创建对象数组.

moveBlockToHead

moveBlockToHead操作也是BlockInfoContiguous经常会被调用的方法,而且这个方法在之前的一篇文章中NameNode处理上报block块逻辑分析有被提到过.在reportDiff方法中被调用到了.

  private void reportDiff(DatanodeStorageInfo storageInfo, 
      BlockListAsLongs newReport, 
      Collection<BlockInfoContiguous> toAdd,              // add to DatanodeDescriptor
      Collection<Block> toRemove,           // remove from DatanodeDescriptor
      Collection<Block> toInvalidate,       // should be removed from DN
      Collection<BlockToMarkCorrupt> toCorrupt, // add to corrupt replicas list
      Collection<StatefulBlockInfo> toUC) { // add to under-construction list

    // place a delimiter in the list which separates blocks 
    // that have been reported from those that have not
    BlockInfoContiguous delimiter = new BlockInfoContiguous(new Block(), (short) 1);
    AddBlockResult result = storageInfo.addBlock(delimiter);
    assert result == AddBlockResult.ADDED 
        : "Delimiting block cannot be present in the node";
    int headIndex = 0; //currently the delimiter is in the head of the list
    int curIndex;

    //...
    
    // scan the report and process newly reported blocks
    for (BlockReportReplica iblk : newReport) {
     ...

      // move block to the head of the list
      if (storedBlock != null &&
          (curIndex = storedBlock.findStorageInfo(storageInfo)) >= 0) {
        headIndex = storageInfo.moveBlockToHead(storedBlock, curIndex, headIndex);
      }
    }
    ...
原理通过将块移动到标记block块的一侧,最后区分哪些block块在本轮有无被汇报过,moveBlockToHead的作用就是将块直接移到链表头部.

  /**
   * Remove this block from the list of blocks related to the specified
   * DatanodeDescriptor. Insert it into the head of the list of blocks.
   *
   * @return the new head of the list.
   */
  public BlockInfoContiguous moveBlockToHead(BlockInfoContiguous head,
      DatanodeStorageInfo storage, int curIndex, int headIndex) {
    if (head == this) {
      return this;
    }
    //将当前block的下一节点指向头节点
    BlockInfoContiguous next = this.setNext(curIndex, head);
    //置空前一节点
    BlockInfoContiguous prev = this.setPrevious(curIndex, null);

    //设置头节点的前一节点为空
    head.setPrevious(headIndex, this);
    //将当前节点原来的前后节点相连
    prev.setNext(prev.findStorageInfo(storage), next);
    if (next != null) {
      next.setPrevious(next.findStorageInfo(storage), prev);
    }
    return this;
  }
用图形展示的效果如下:


在BlockInfoContiguous类中,其实还有一些其他的辅助方法,这里主要分析其中的3种也是经常被调用的3种方法,下图是其中主要的方法分类,同种颜色表明是同类型的操作



Block迭代器BlockIterator

对于一个节点上来说,我们想要遍历其上的block,就需要一个迭代器,能够通过next()类似的方法获取其中的block块,在jdk自带的链表中是有直接获取的方法的,但是对于HDFS中如此设计的链表,HDFS的内部也同样设计了对应的迭代器.

private static class BlockIterator implements Iterator<BlockInfoContiguous> {
    private int index = 0;
    private final List<Iterator<BlockInfoContiguous>> iterators;
    
    private BlockIterator(final DatanodeStorageInfo... storages) {
      List<Iterator<BlockInfoContiguous>> iterators = new ArrayList<Iterator<BlockInfoContiguous>>();
      for (DatanodeStorageInfo e : storages) {
        iterators.add(e.getBlockIterator());
      }
      this.iterators = Collections.unmodifiableList(iterators);
    }

    @Override
    public boolean hasNext() {
      update();
      return !iterators.isEmpty() && iterators.get(index).hasNext();
    }

    @Override
    public BlockInfoContiguous next() {
      update();
      return iterators.get(index).next();
    }
    
    @Override
    public void remove() {
      throw new UnsupportedOperationException("Remove unsupported.");
    }
    
    private void update() {
      while(index < iterators.size() - 1 && !iterators.get(index).hasNext()) {
        index++;
      }
    }
  }
storages节点信息是以参数的形式传入的.

DatanodeStorageInfo[] getStorageInfos() {
    synchronized (storageMap) {
      final Collection<DatanodeStorageInfo> storages = storageMap.values();
      return storages.toArray(new DatanodeStorageInfo[storages.size()]);
    }
  }
在具体的迭代器内部设计,如下:

  /**
   * Iterates over the list of blocks belonging to the data-node.
   */
  class BlockIterator implements Iterator<BlockInfoContiguous> {
    private BlockInfoContiguous current;

    BlockIterator(BlockInfoContiguous head) {
      this.current = head;
    }

    public boolean hasNext() {
      return current != null;
    }

    public BlockInfoContiguous next() {
      BlockInfoContiguous res = current;
      current = current.getNext(current.findStorageInfo(DatanodeStorageInfo.this));
      return res;
    }

    public void remove() {
      throw new UnsupportedOperationException("Sorry. can't remove.");
    }
  }

在DecommisionManager的processForDecomInternal中就用到了这个迭代器:

    /**
     * Returns a list of blocks on a datanode that are insufficiently 
     * replicated, i.e. are under-replicated enough to prevent decommission.
     * <p/>
     * As part of this, it also schedules replication work for 
     * any under-replicated blocks.
     *
     * @param datanode
     * @return List of insufficiently replicated blocks 
     */
    private AbstractList<BlockInfoContiguous> handleInsufficientlyReplicated(
        final DatanodeDescriptor datanode) {
      AbstractList<BlockInfoContiguous> insufficient = new ChunkedArrayList<>();
      processBlocksForDecomInternal(datanode, datanode.getBlockIterator(),
          insufficient, false);
      return insufficient;
    }

总结

以上就是HDFS中关系着大量block块的链表,也帮大家复习复习了数据结构中的链表操作了.但是这里需要提醒一点,一旦集群中的block块数达到千万级别,BlokcInfoContiguous同样会消耗掉大量的存储空间,也就是说会有同时会有千万个INodeFile和BlockInfoContiguous对象.


posted @ 2020-01-12 19:09  回眸,境界  阅读(311)  评论(0编辑  收藏  举报