A^X mod P
E - A^X mod P
题目链接:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2605
Description
It's easy for ACMer to calculate A^X mod P. Now given seven integers n, A, K, a, b, m, P, and a function f(x) which defined as following.
f(x) = K, x = 1
f(x) = (a*f(x-1) + b)%m , x > 1
Now, Your task is to calculate
( A^(f(1)) + A^(f(2)) + A^(f(3)) + ...... + A^(f(n)) ) modular P.
Input
In the first line there is an integer T (1 < T <= 40), which indicates the number of test cases, and then T test cases follow. A test case contains seven integers n, A, K, a, b, m, P in one line.
1 <= n <= 10^6
0 <= A, K, a, b <= 10^9
1 <= m, P <= 10^9
Output
For each case, the output format is “Case #c: ans”.
c is the case number start from 1.
ans is the answer of this problem.
Sample Input
23 2 1 1 1 100 1003 15 123 2 3 1000 107
Sample Output
Case #1: 14Case #2: 63
一种很不错的优化方式。
运用预处理的两个数组进行O(1)的运算求出A^x (0<=x<=10^9)
dp1数组构造A^0~A^(10^5),间隔为A。
dp2数组构造A^(10^5)~A^(10^10),间隔为A^(10^5)。
这样对于任意的A^x就能表示成f2[x/(10^5)]*f1[x%(10^5)]。
从而用空间换取时间。
下面是代码:
#include <stdio.h> typedef long long ll; ll dp1[150000]; ll dp2[150000]; int main() { ll n,A,K,a,b,m,p; int t; int nn=0; scanf("%d",&t); while(t--) { ++nn; scanf("%lld%lld%lld%lld%lld%lld%lld",&n,&A,&K,&a,&b,&m,&p); dp1[0]=dp2[0]=1; dp1[1]=A%p; for(int i=2;i<=100000;i++) { dp1[i]=(dp1[i-1]*dp1[1])%p; } dp2[1]=dp1[100000]; for(int i=2;i<=100000;i++) dp2[i]=(dp2[i-1]*dp2[1])%p; long long ans=0,f=K; for(int i=0;i<n;i++) { ans=(ans+dp2[f/100000]*dp1[f%100000])%p; f=(a*f+b)%m; } printf("Case #%d: %lld\n",nn,ans); } return 0; }