Deep Learning Papers
一、Image Classification(Recognition)
lenet: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
alexnet: http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
overfeat: http://arxiv.org/pdf/1312.6229v4.pdf
vgg: http://arxiv.org/pdf/1409.1556.pdf
googlenet: http://arxiv.org/pdf/1409.4842v1.pdf
二、Image Detection(Segmentation)
overfeat: http://arxiv.org/pdf/1312.6229v4.pdf
dnn: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
rcnn: http://arxiv.org/pdf/1311.2524.pdf
spp: http://arxiv.org/pdf/1406.4729v4.pdf
fcn: http://arxiv.org/pdf/1411.4038v2.pdf
fast rcnn: http://arxiv.org/pdf/1504.08083v1.pdf
三、Image(Visual) Search
feature learning+hash: http://arxiv.org/pdf/1504.03410v1.pdf
triplet learning: http://arxiv.org/pdf/1412.6622v3.pdf
deep rank: http://arxiv.org/pdf/1404.4661v1.pdf
Visual Search at Pinterest: http://arxiv.org/pdf/1505.07647v1.pdf
四、Image/Video Captioning
Baidu/UCLA: http://arxiv.org/abs/1410.1090
Toronto: http://arxiv.org/abs/1411.2539
Berkeley: http://arxiv.org/abs/1411.4389
Google: http://arxiv.org/abs/1411.4555
Stanford: http://cs.stanford.edu/people/karpathy/deepimagesent/
UML/UT: http://arxiv.org/abs/1412.4729
Microsoft/CMU: http://arxiv.org/abs/1411.5654
Microsoft: http://arxiv.org/abs/1411.4952
版权声明:本文博主原创文章。博客,未经同意不得转载。