POJ 3468 A Simple Problem with Integers //线段树的成段更新
A Simple Problem with Integers
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 59046 | Accepted: 17974 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
The sums may exceed the range of 32-bit integers.
Source
POJ Monthly--2007.11.25, Yang Yi
/* 区间更新的lazy操作。 */ #include <stdio.h> struct node { int l, r; __int64 sum; __int64 lazy; //当成段更新时,往往不用更新到单个的点。lazy操作大大节省了时间。 }tree[300005]; int h[100005]; __int64 sum; //int超限 void build(int l, int r, int n) { int mid; tree[n].l = l; tree[n].r = r; tree[n].lazy = 0; //赋初值 if(l==r) { tree[n].sum = h[l]; return ; } mid = (l+r)/2; build(l, mid, 2*n); build(mid+1, r, 2*n+1); tree[n].sum = tree[2*n].sum+tree[2*n+1].sum; } void add(int l, int r, __int64 k, int n) { int mid; if(tree[n].l==l && tree[n].r==r) //当须要更新的段 与 结点相应的段吻合时,直接把此结点的lazy值更新就可以,不须要再向下更新。 { tree[n].lazy += k; return; } tree[n].sum += k*(r-l+1); //当此区间包括须要更新的区间,但不吻合时,须要向下继续查找,此时须要更新这个父节点的sum值。 mid = (tree[n].l + tree[n].r)/2; if(r <= mid) add(l, r, k, 2*n); else if(l >=mid+1) add(l, r, k, 2*n+1); else { add(l, mid, k, 2*n); add(mid+1, r, k, 2*n+1); } } void qu(int l, int r, int n) { int mid; if(tree[n].l==l && tree[n].r==r) { sum += tree[n].sum + (r-l+1)*tree[n].lazy; //当查找的段与 此结点的段吻合时,sum 值等于这个结点的sum加上lazy乘区间长度的值。 return ; } if(tree[n].lazy!=0 && tree[n].l!=tree[n].r) //当查找区间为此结点相应区间的子集时,须要将此结点相应的lazy值下放到其子节点,并把此结点的lazy值置为0。 { add(tree[2*n].l, tree[2*n].r, tree[n].lazy, n); add(tree[2*n+1].l, tree[2*n+1].r, tree[n].lazy, n); tree[n].lazy = 0; } mid = (tree[n].l + tree[n].r)/2; if(l >= mid+1) qu(l, r, 2*n+1); else if(r <= mid) qu(l, r, 2*n); else { qu(l, mid, 2*n); qu(mid+1, r, 2*n+1); } } int main() { int n, q; int i; int a, b, c; char ch[10]; scanf("%d%d", &n, &q); for(i=1; i<=n; i++) scanf("%d", &h[i]); build(1, n, 1); while(q--) { scanf("%s", ch); if(ch[0]=='Q') { scanf("%d%d", &a, &b); sum = 0; qu(a, b, 1); printf("%I64d\n", sum); } else { scanf("%d%d%d", &a, &b, &c); add(a, b, c, 1); } } return 0; }