逐步优化求解最大子序列和
求解最大子序列和
tag: 数据结构与算法
最大子序列和问题:
给定序列A1, A2,... AN, 求最大的子序列和。
例如 :
对于序列4, -3, 5, -2, -1, 2, 6, -2, 最大序列和为11(4 -3 + 5 - 2 - 1 + 2 + 6)
算法一:
利用两个循环,第一个循环把序列遍历一遍,第二个循环则从Ai累加到AN,每加一次判断一下是否大于之前的最大子序列和:
int maxSubsequenceSum1 (const int arr[], int n) {
int maxSum = 0;
int temp;
for (int i = 0; i < n; i++) {
temp = 0;
for (int j = i; j < n; j++) {
temp += arr[j];
if (temp > maxSum)
maxSum = temp;
}
}
return maxSum;
}
时间复杂度:O(n2)
算法二:
首先把序列从中间一分为二, 则最大子序列和的存在有三种情况:
- 全在左边的子序列
- 全在右边的子序列
- 处在中间
对于第一和第二种情况,只需要递归调用求解函数,对于第三种情况则要分别求出从中间出发,向左边和向右边各自的最大子序列和。
int max(int a, int b, int c) {
int max;
if (a > b)
max = a;
else
max = b;
if (c > max)
max = c;
return max;
}
int maxSubsequenceSum2 (const int arr[], int begin, int end) {
int maxLeftSum, maxRightSum, maxLeftCenterSum, maxRightCenterSum, center, temp;
if (begin >= end) {
if (arr[begin] > 0)
return arr[begin];
else
return 0;
}
center = (begin+end)/2;
maxLeftSum = maxSubsequenceSum2(arr, begin, center);
maxRightSum = maxSubsequenceSum2(arr, center+1, end);
maxLeftCenterSum = 0;
temp = 0;
for (int i = center; i >= begin; i--) {
temp += arr[i];
if (temp > maxLeftCenterSum)
maxLeftCenterSum = temp;
}
maxRightCenterSum = 0;
temp = 0;
for (int i = center+1; i <= end; i++) {
temp += arr[i];
if (temp > maxRightCenterSum)
maxRightCenterSum = temp;
}
return max(maxLeftSum, maxRightSum, (maxLeftCenterSum+maxRightCenterSum));
}
时间复杂度:O(nlogn)
算法三:
累加序列,若发现当前序列和大于之前最大序列和,则替换.若发现当前序列和小于0,则将当前序列和置换成0,相当于把前面的序列都舍弃掉.
int maxSubsequenceSum3(int arr[], int n) {
int tempSum = 0, maxSum = 0;
for (int i = 0; i < n; i++) {
tempSum += arr[i];
if (tempSum < 0)
tempSum = 0;
if (tempSum > maxSum)
maxSum = tempSum;
}
return maxSum;
}
时间复杂度:O(n)