hadoop项目之求出每年二月的最高气温(Combiner优化)
hadoop项目之求出每年二月的最高气温(Combiner优化)
一、项目结构
一、java实现随机生成日期和气温
package com.shujia.weather;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
public class RandomWeather {
public static void main(String[] args) throws ParseException, IOException {
//创建日期格式
DateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
long start = sdf.parse("2000-01-01 00:00:00").getTime();
long end = sdf.parse("2022-12-31 00:00:00").getTime();
long difference=end - start;
BufferedWriter bw = new BufferedWriter(new FileWriter("F:\\software\\IdeaProjects\\bigdata19-project\\biddata19-mapreduce\\src\\data\\weather.txt"));
for (int i=0;i<10000;i++){
//随机生成时间
Date date = new Date(start + (long) (Math.random() * difference));
//随机生成一个温度
int temperature = -20+(int) (Math.random()*60);
//打印
// System.out.println(date+"\t"+temperature);
bw.write(sdf.format(date)+"\t"+temperature);//将结果写入文件
bw.newLine();
bw.flush();
}
bw.close();
}
}
二、将这个weather.txt文件上传到虚拟机后再上传到hadoop
1、通过xftp上传文件
2、通过命令上传到hadoop
hadoop fs -put weather.txt /路径
三、项目实现
package com.shujia.weather;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
class WeatherMapper extends Mapper<LongWritable,Text,Text,LongWritable>{
/*
2022-06-12 02:40:26 21
2002-01-03 03:49:27 -13
2001-04-21 19:19:22 -16
2005-01-18 01:52:15 10
求出每年二月份的最高气温
*/
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] str = line.split("\t");
String temperature = str[1];
String[] strings = str[0].split("-");
String Month = strings[1];
if ("02".equals(Month)){
context.write(new Text(strings[0]+"-"+Month),new LongWritable(Long.parseLong(temperature)));
}
}
}
class WeatherReducer extends Reducer<Text,LongWritable,Text,LongWritable>{
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
long max=0L;
for (LongWritable value : values) {
long l = value.get();
if (l>max){
max=l;
}
}
context.write(key,new LongWritable(max));
}
}
public class WeatherDemo {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setCombinerClass(WeatherReducer.class);//Combiner优化
job.setJarByClass(WeatherDemo.class);
job.setMapperClass(WeatherMapper.class);
job.setReducerClass(WeatherReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
job.waitForCompletion(true);
}
}
优化前
优化后
减少了reduce 从map拉取数据的过程,提高计算效率。
hadoop 的计算特点:将计算任务向数据靠拢,而不是将数据向计算靠拢。
注意:将reduce端的聚合操作,放到map 进行执行。适合求和,计数,等一些等幂操作。不适合求平均值,次幂等类似操作