hdu 5147 Sequence II (树状数组 求逆序数)
Sequence II
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 331 Accepted Submission(s): 151
Problem Description
Long long ago, there is a sequence A with length n. All numbers in this sequence is no smaller than 1 and no bigger than n, and all numbers are different in this sequence.
Please calculate how many quad (a,b,c,d) satisfy:
1. 1≤a<b<c<d≤n
2. Aa<Ab
3. Ac<Ad
Please calculate how many quad (a,b,c,d) satisfy:
1. 1≤a<b<c<d≤n
2. Aa<Ab
3. Ac<Ad
Input
The first line contains a single integer T, indicating the number of test cases.
Each test case begins with a line contains an integer n.
The next line follows n integers A1,A2,…,An.
[Technical Specification]
1 <= T <= 100
1 <= n <= 50000
1 <= Ai <= n
Each test case begins with a line contains an integer n.
The next line follows n integers A1,A2,…,An.
[Technical Specification]
1 <= T <= 100
1 <= n <= 50000
1 <= Ai <= n
Output
For each case output one line contains a integer,the number of quad.
Sample Input
1
5
1 3 2 4 5
Sample Output
4
题意:
很久很久以前,有一个长度为n的数列A,数列中的每个数都不小于1且不大于n,且数列中不存在两个相同的数. 请统计有多少四元组(a,b,c,d)满足: 1. 1≤a<b<c<d≤n 2. Aa<Ab 3. Ac<Ad
分析:
我的做法是把四元组分解成二元组来处理,分解的方法就是枚举把数组依次分为两部分,然后对每部分都用树状数组求逆序数,结果相乘就是满足条件的四元组的个数。
树状数组求逆序数的做法是,因为知道数列里的数是1-n,所以可以 以个数为c[]数组的元素,值为下标,通过求和来 求大于当前数 或者 小于当前数的个数
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cmath> 6 #include <vector> 7 #include <algorithm> 8 #define LL __int64 9 const int maxn = 1e5 + 10; 10 using namespace std; 11 LL a[maxn], c[maxn], n, f[maxn]; 12 13 int lowbit(int x) 14 { 15 return x&(-x); 16 } 17 void add(int x,int d) 18 { 19 while(x <= n) 20 { 21 c[x] += d; 22 x +=lowbit(x); 23 } 24 } 25 LL sum(int x) 26 { 27 LL ret = 0; 28 while(x > 0) 29 { 30 ret += c[x]; 31 x -= lowbit(x); 32 } 33 return ret; 34 } 35 36 int main() 37 { 38 int t; 39 LL i, ans, tmp; 40 scanf("%d", &t); 41 while(t--) 42 { 43 ans = 0; 44 scanf("%I64d", &n); 45 46 memset(f, 0, sizeof(f)); 47 memset(c, 0, sizeof(c)); 48 for(i = 1; i <= n; i++) 49 { 50 scanf("%I64d", &a[i]); 51 add(a[i], 1); 52 f[i] = f[i-1] + sum(a[i]-1); 53 } 54 55 memset(c, 0, sizeof(c)); 56 tmp = 0; 57 for(i = n; i >= 1; i--) 58 { 59 tmp = sum(n) - sum(a[i]); 60 add(a[i], 1); 61 ans += tmp*f[i-1]; 62 } 63 printf("%I64d\n", ans); 64 } 65 return 0; 66 }