LA 4127 - The Sky is the Limit (离散化 扫描线 几何模板)
非原创 原创地址:http://blog.csdn.net/jingqi814/article/details/26117241
题意:输入n座山的信息(山的横坐标,高度,山底宽度),计算他们的轮廓线,
即露出来的表面边长,有些山是重叠的不计。空白地带不计,每座山都是等腰三角形。
分析:大白书P414页。
求小山的总长度,用一些虚线将其离散化,分成一段一段的,特征点:山脚,山顶,交点。这样就能保
证相邻两个扫描点之间再无交点。然后一最上面的点就是分割点,维护上一个点lastp即可。
1 #include<iostream> 2 #include<cmath> 3 #include<cstdio> 4 #include<algorithm> 5 #include<vector> 6 const double eps=1e-8; 7 using namespace std; 8 9 struct Point{ //定义点 10 double x; 11 double y; 12 Point(double x=0,double y=0):x(x),y(y){} //构造函数 13 //void operator<<(Point &A) {cout<<A.x<<' '<<A.y<<endl;} 14 }; 15 16 int dcmp(double x) {return (x>eps)-(x<-eps); } //判断精度 17 18 typedef Point Vector; //自定义别名 19 20 Vector operator +(Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y);} //向量+向量=向量,点+向量=点 21 22 Vector operator -(Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); } //点-点=向量 23 24 Vector operator *(Vector A,double p) { return Vector(A.x*p,A.y*p); } //向量*数=向量 25 26 Vector operator /(Vector A,double p) {return Vector(A.x/p,A.y/p);} //向量/数=向量 27 28 ostream &operator<<(ostream & out,Point & P) { out<<P.x<<' '<<P.y<<endl; return out;} //输出点的 符号重载 29 30 bool operator< (const Point &A,const Point &B) { return A.x<B.x||(A.x==B.x&&A.y<B.y); } //小于号 重载 31 32 bool operator== ( const Point &A,const Point &B) { return dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)==0;} //等于号 重载 33 34 double Dot(Vector A,Vector B) {return A.x*B.x+A.y*B.y;} //点积 35 36 double Cross(Vector A,Vector B) {return A.x*B.y-B.x*A.y; } //叉积 37 38 double Length(Vector A) { return sqrt(Dot(A, A));} //向量长度 39 40 double Angle(Vector A,Vector B) {return acos(Dot(A,B)/Length(A)/Length(B));} //向量夹角 41 42 double Area2(Point A,Point B,Point C ) {return Cross(B-A, C-A);} //三角形面积 43 44 Vector Rotate(Vector A,double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));} //向量旋转,rad为逆时针旋转的弧度 45 Vector Normal(Vector A) {double L=Length(A);return Vector(-A.y/L,A.x/L);} //计算向量的单位法线,需确保A不是零向量。 46 47 Point GetLineIntersection(Point P,Vector v,Point Q,Vector w) //两直线的交点。需确保直线 P+tv 和 Q+tw有唯一交点,cross(v,w)需非0。 48 { //t是参数,v,w分别为两直线的向量。 49 Vector u=P-Q; 50 double t=Cross(w, u)/Cross(v,w); 51 return P+v*t; 52 } 53 54 double DistanceToLine(Point P,Point A,Point B) //点到直线的距离,p到ab的距离 55 { 56 Vector v1=P-A; Vector v2=B-A; 57 return fabs(Cross(v1,v2))/Length(v2); 58 } 59 60 double DistanceToSegment(Point P,Point A,Point B) //点到线段的距离,p到ab 61 { 62 if(A==B) return Length(P-A); 63 Vector v1=B-A; 64 Vector v2=P-A; 65 Vector v3=P-B; 66 67 if(dcmp(Dot(v1,v2))==-1) return Length(v2); 68 else if(Dot(v1,v3)>0) return Length(v3); 69 else return DistanceToLine(P, A, B); 70 71 } 72 73 Point GetLineProjection(Point P,Point A,Point B) //点在直线的投影,p到ab 74 { 75 Vector v=B-A; 76 Vector v1=P-A; 77 double t=Dot(v,v1)/Dot(v,v); 78 return A+v*t; 79 } 80 81 bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2) //判断线段相交,交点不在端点上(如果交点在端点上可以借助下面的OnSegment来判断) 82 { 83 double c1=Cross(b1-a1, a2-a1); 84 double c2=Cross(b2-a1, a2-a1); 85 double c3=Cross(a1-b1, b2-b1); 86 double c4=Cross(a2-b1, b2-b1); 87 return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0 ; 88 } 89 90 bool OnSegment(Point P,Point A,Point B) //判断一个点是否在一条线段上 91 { 92 return dcmp(Cross(P-A, P-B))==0&&dcmp(Dot(P-A,P-B))<0; 93 } 94 95 double PolygonArea(Point *p,int n) //多边形的有向面积 96 { 97 double area=0; 98 99 for(int i=1;i<n-1;i++) 100 { 101 area+=Cross(p[i]-p[0], p[i+1]-p[0]); 102 } 103 return area/2; 104 105 } 106 107 Point read_point() //输入点 108 { 109 Point P; 110 scanf("%lf%lf",&P.x,&P.y); 111 return P; 112 } 113 114 int n; 115 Point L[110][2][2]; 116 double x[20000]; // 存放离散化的x坐标 117 118 int main() 119 { 120 double X,H,B; 121 int cas=0; 122 while(cin>>n && n) 123 { 124 int c=0; 125 for(int i=0;i<n;i++) 126 { 127 scanf("%lf%lf%lf",&X,&H,&B); 128 L[i][0][0]=Point(X-B*0.5,0); 129 L[i][0][1]=L[i][1][0]=Point(X,H); 130 L[i][1][1]=Point(X+B*0.5,0); 131 132 x[c++]=X-B*0.5; 133 x[c++]=X; 134 x[c++]=X+B*0.5; 135 } 136 for(int i=0;i<n;i++) 137 for(int a=0;a<2;a++) 138 for(int j=i+1;j<n;j++) 139 for(int b=0;b<2;b++) 140 { 141 Point A=L[i][a][0]; 142 Point B=L[i][a][1]; 143 Point C=L[j][b][0]; 144 Point D=L[j][b][1]; 145 146 if(SegmentProperIntersection(A, B, C, D)) 147 { 148 x[c++]=GetLineIntersection(A, B-A, C, D-C).x; 149 } 150 } 151 152 sort(x,x+c); 153 c=unique(x, x+c)-x; //unique()函数去重函数,在头文件algorithm中 154 double ans=0; 155 Point lastp=Point(x[0],0); 156 157 for(int i=0;i<c;i++) 158 { 159 Point P=Point(x[i],0); 160 Vector v=Vector(0,1); 161 double maxy=-1; 162 Point inter; 163 164 for(int j=0;j<n;j++) 165 for(int a=0;a<2;a++) 166 { 167 Point A=L[j][a][0]; 168 Point B=L[j][a][1]; 169 if(dcmp(A.x-x[i])<=0&&dcmp(B.x-x[i])>=0) 170 { 171 inter=GetLineIntersection(A, B-A, P, v); 172 maxy=max(maxy,inter.y); 173 } 174 } 175 if(i>0&&(dcmp(maxy)>0||dcmp(lastp.y)>0)) ans+=Length(Point(x[i],maxy)-lastp); 176 lastp=Point(x[i],maxy); 177 } 178 printf("Case %d: %.0f\n\n",++cas,ans); 179 } 180 }