poj 1067 取石子游戏( 威佐夫博奕)

题目:http://poj.org/problem?id=1067

 题意:有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

贴一个博弈论总结的博客:http://www.cnblogs.com/lmnx/articles/2482963.html

黄金分割比例判断是不是非奇异局势,面对奇异局势必败 两个人如果都采用正确操作,

那么面对非奇异局势,先拿者必胜, 反之,则后拿者取胜。 
公式 ak =[k(1+√5)/2],bk= ak + k 

 1 #include <iostream>
 2 #include <cmath>
 3 using namespace std;
 4 
 5 int main()
 6 {
 7     int x, y, t;
 8     while(cin>>x>>y)
 9     {
10         if(x>y)
11         {
12             t = x;
13             x = y;
14             y = t;
15         }
16         if(x == (int)((y-x)*(1+sqrt(5.0))/2))
17         cout<<"0"<<endl;
18         else
19         cout<<"1"<<endl;
20     }
21     return 0;
22 }

 

posted @ 2014-03-14 10:02  水门  阅读(158)  评论(0编辑  收藏  举报