《Elasticsearch权威指南》案例集 之 深入搜索

精确值查找:

GET /my_store/products/_search
{
    "query" : {
        "constant_score" : { 
            "filter" : {
                "term" : { 
                    "price" : 20
                }
            }
        }
    }
}

### 以下查询是否能查到结果和文档索引的方式有关

GET /my_store/products/_search
{
    "query" : {
        "constant_score" : {
            "filter" : {
                "term" : {
                    "productID" : "XHDK-A-1293-#fJ3"
                }
            }
        }
    }
}
### 要将其设置成 not_analyzed 无需分析的才能查到
DELETE /my_store 
PUT /my_store 
{
    "mappings" : {
        "products" : {
            "properties" : {
                "productID" : {
                    "type" : "string",
                    "index" : "not_analyzed" 
                }
            }
        }
    }
 
}

组合过滤器:

### 布尔过滤器
{
   "bool" : {
      "must" :     [],
      "should" :   [],
      "must_not" : [],
   }
}

### 示例
GET /my_store/products/_search
{
   "query" : {
      "filtered" : { 
         "filter" : {
            "bool" : {
              "should" : [
                 { "term" : {"price" : 20}}, 
                 { "term" : {"productID" : "XHDK-A-1293-#fJ3"}} 
              ],
              "must_not" : {
                 "term" : {"price" : 30} 
              }
           }
         }
      }
   }
}

### 嵌套布尔过滤器
GET /my_store/products/_search
{
   "query" : {
      "filtered" : {
         "filter" : {
            "bool" : {
              "should" : [
                { "term" : {"productID" : "KDKE-B-9947-#kL5"}}, 
                { "bool" : { 
                  "must" : [
                    { "term" : {"productID" : "JODL-X-1937-#pV7"}}, 
                    { "term" : {"price" : 30}} 
                  ]
                }}
              ]
           }
         }
      }
   }
}

查找多个精确值:

### terms
{
    "terms" : {
        "price" : [20, 30]
    }
}

#### 示例
GET /my_store/products/_search
{
    "query" : {
        "constant_score" : {
            "filter" : {
                "terms" : { 
                    "price" : [20, 30]
                }
            }
        }
    }
}

### 一定要了解 term 和 terms 是 包含(contains) 操作,而非 等值(equals) (判断


### 精确相等
### 最好的方式是增加并索引另一个字段, 这个字段用以存储该字段包含词项的数量
{ "tags" : ["search"], "tag_count" : 1 }
{ "tags" : ["search", "open_source"], "tag_count" : 2 }

GET /my_index/my_type/_search
{
    "query": {
        "constant_score" : {
            "filter" : {
                 "bool" : {
                    "must" : [
                        { "term" : { "tags" : "search" } }, 
                        { "term" : { "tag_count" : 1 } } 
                    ]
                }
            }
        }
    }
}

范围:

### gt: > 大于(greater than)
### lt: < 小于(less than)
### gte: >= 大于或等于(greater than or equal to)
### lte: <= 小于或等于(less than or equal to)
"range" : {
    "price" : {
        "gte" : 20,
        "lte" : 40
    }
}

#### 示例
GET /my_store/products/_search
{
    "query" : {
        "constant_score" : {
            "filter" : {
                "range" : {
                    "price" : {
                        "gte" : 20,
                        "lt"  : 40
                    }
                }
            }
        }
    }
}

### 日期范围
"range" : {
    "timestamp" : {
        "gt" : "2014-01-01 00:00:00",
        "lt" : "2014-01-07 00:00:00"
    }
}

### 过去一小时
"range" : {
    "timestamp" : {
        "gt" : "now-1h"
    }
}

###  早于 2014 年 1 月 1 日加 1 月
"range" : {
    "timestamp" : {
        "gt" : "2014-01-01 00:00:00",
        "lt" : "2014-01-01 00:00:00||+1M" 
    }
}

### 字符串范围
### 查找从 a 到 b (不包含)的字符串
"range" : {
    "title" : {
        "gte" : "a",
        "lt" :  "b"
    }
}

处理Null值:

### 存在查询
GET /my_index/posts/_search
{
    "query" : {
        "constant_score" : {
            "filter" : {
                "exists" : { "field" : "tags" }
            }
        }
    }
}

### 缺失查询
GET /my_index/posts/_search
{
    "query" : {
        "constant_score" : {
            "filter": {
                "missing" : { "field" : "tags" }
            }
        }
    }
}



### 对象上的存在与缺失
##### 对象示例
{
   "name" : {
      "first" : "John",
      "last" :  "Smith"
   }
}
### 过滤操作
{
    "exists" : { "field" : "name" }
}
### 实际执行的是
{
    "bool": {
        "should": [
            { "exists": { "field": "name.first" }},
            { "exists": { "field": "name.last" }}
        ]
    }
}

匹配查询:

GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "title": "QUICK!"
        }
    }
}

多词查询:

### 多词查询
GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "title": "BROWN DOG!"
        }
    }
}

### 提高精度
GET /my_index/my_type/_search
{
    "query": {
        "match": {
            "title": {      
                "query":    "BROWN DOG!",
                "operator": "and"
            }
        }
    }
}

### 控制精度
GET /my_index/my_type/_search
{
  "query": {
    "match": {
      "title": {
        "query":                "quick brown dog",
        "minimum_should_match": "75%"
      }
    }
  }
}

组合查询:

### 组合查询
GET /my_index/my_type/_search
{
  "query": {
    "bool": {
      "must":     { "match": { "title": "quick" }},
      "must_not": { "match": { "title": "lazy"  }},
      "should": [
                  { "match": { "title": "brown" }},
                  { "match": { "title": "dog"   }}
      ]
    }
  }
}

### 控制精度
### minimum_should_match可以设置为某个具体数字,更常用的做法是将其设置为一个百分数
### 这个查询结果会将所有满足以下条件的文档返回: title 字段包含 "brown" AND "fox" 、 "brown" AND "dog" 或 "fox" AND "dog" 。如果有文档包含所有三个条件,它会比只包含两个的文档更相关。
GET /my_index/my_type/_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { "title": "brown" }},
        { "match": { "title": "fox"   }},
        { "match": { "title": "dog"   }}
      ],
      "minimum_should_match": 2 
    }
  }
}

如何使用布尔匹配:

### 以下两个查询等价
## 查询1
{
    "match": { "title": "brown fox"}
}
## 查询2
{
  "bool": {
    "should": [
      { "term": { "title": "brown" }},
      { "term": { "title": "fox"   }}
    ]
  }
}

### 以下两个查询等价
## 查询3
{
    "match": {
        "title": {
            "query":    "brown fox",
            "operator": "and"
        }
    }
}
## 查询4
{
  "bool": {
    "must": [
      { "term": { "title": "brown" }},
      { "term": { "title": "fox"   }}
    ]
  }
}

### 以下两个查询等价
## 查询5
{
    "match": {
        "title": {
            "query":                "quick brown fox",
            "minimum_should_match": "75%"
        }
    }
}
## 查询6
### 因为只有三条语句,match 查询的参数 minimum_should_match 值 75% 会被截断成 2 。即三条 should 语句中至少有两条必须匹配。
{
  "bool": {
    "should": [
      { "term": { "title": "brown" }},
      { "term": { "title": "fox"   }},
      { "term": { "title": "quick" }}
    ],
    "minimum_should_match": 2 (1)
  }
}

查询语句提升权重:

GET /_search
{
    "query": {
        "bool": {
            "must": {
                "match": {  (1"content": {
                        "query":    "full text search",
                        "operator": "and"
                    }
                }
            },
            "should": [
                { "match": {
                    "content": {
                        "query": "Elasticsearch",
                        "boost": 3 (2)
                    }
                }},
                { "match": {
                    "content": {
                        "query": "Lucene",
                        "boost": 2 (3)
                    }
                }}
            ]
        }
    }
}

控制分析:

GET /my_index/_analyze
{
  "field": "my_type.title",   
  "text": "Foxes"
}

GET /my_index/my_type/_validate/query?explain
{
    "query": {
        "bool": {
            "should": [
                { "match": { "title":         "Foxes"}},
                { "match": { "english_title": "Foxes"}}
            ]
        }
    }
}

多字符串查询:

GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { "title":  "War and Peace" }},
        { "match": { "author": "Leo Tolstoy"   }}
      ]
    }
  }
}

GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { "title":  "War and Peace" }},
        { "match": { "author": "Leo Tolstoy"   }},
        { "bool":  {
          "should": [
            { "match": { "translator": "Constance Garnett" }},
            { "match": { "translator": "Louise Maude"      }}
          ]
        }}
      ]
    }
  }
}

### 语句的优先级
GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { 
            "title":  {
              "query": "War and Peace",
              "boost": 2
        }}},
        { "match": { 
            "author":  {
              "query": "Leo Tolstoy",
              "boost": 2
        }}},
        { "bool":  { 
            "should": [
              { "match": { "translator": "Constance Garnett" }},
              { "match": { "translator": "Louise Maude"      }}
            ]
        }}
      ]
    }
  }
}

最佳字段:

### dis_max 查询:将任何与任一查询匹配的文档作为结果返回,但只将最佳匹配的评分作为查询的评分结果返回 
{
    "query": {
        "dis_max": {
            "queries": [
                { "match": { "title": "Brown fox" }},
                { "match": { "body":  "Brown fox" }}
            ]
        }
    }
}

最佳字段查询调优:

### 通过指定 tie_breaker 这个参数将其他匹配语句的评分也考虑其中
{
    "query": {
        "dis_max": {
            "queries": [
                { "match": { "title": "Quick pets" }},
                { "match": { "body":  "Quick pets" }}
            ],
            "tie_breaker": 0.3
        }
    }
}

multi_match查询:

### best_fields 、 most_fields 和 cross_fields (最佳字段、多数字段、跨字段)
### 以下两个查询等价
## 查询1
{
  "dis_max": {
    "queries":  [
      {
        "match": {
          "title": {
            "query": "Quick brown fox",
            "minimum_should_match": "30%"
          }
        }
      },
      {
        "match": {
          "body": {
            "query": "Quick brown fox",
            "minimum_should_match": "30%"
          }
        }
      },
    ],
    "tie_breaker": 0.3
  }
}
## 查询2
{
    "multi_match": {
        "query":                "Quick brown fox",
        "type":                 "best_fields", 
        "fields":               [ "title", "body" ],
        "tie_breaker":          0.3,
        "minimum_should_match": "30%" 
    }
}

### 查询字段名称的模糊匹配
{
    "multi_match": {
        "query":  "Quick brown fox",
        "fields": "*_title"
    }
}

### 提升单个字段的权重
{
    "multi_match": {
        "query":  "Quick brown fox",
        "fields": [ "*_title", "chapter_title^2" ] 
    }
}

多数字段:

GET /my_index/_search
{
   "query": {
        "multi_match": {
            "query":  "jumping rabbits",
            "type":   "most_fields", 
            "fields": [ "title", "title.std" ]
        }
    }
}

### 权重控制
GET /my_index/_search
{
   "query": {
        "multi_match": {
            "query":       "jumping rabbits",
            "type":        "most_fields",
            "fields":      [ "title^10", "title.std" ] 
        }
    }
}

跨字段实体搜索:

### 查询每个字段并将每个字段的匹配评分结果相加
{
  "query": {
    "multi_match": {
      "query":       "Poland Street W1V",
      "type":        "most_fields",
      "fields":      [ "street", "city", "country", "postcode" ]
    }
  }
}

自定义 _all 字段:

### copy_to
PUT /my_index
{
    "mappings": {
        "person": {
            "properties": {
                "first_name": {
                    "type":     "string",
                    "copy_to":  "full_name" 
                },
                "last_name": {
                    "type":     "string",
                    "copy_to":  "full_name" 
                },
                "full_name": {
                    "type":     "string"
                }
            }
        }
    }
}

cross-fields跨字段查询:

GET /books/_search
{
    "query": {
        "multi_match": {
            "query":       "peter smith",
            "type":        "cross_fields",
            "fields":      [ "title^2", "description" ] 
        }
    }
}

短语匹配:

GET /my_index/my_type/_search
{
    "query": {
        "match_phrase": {
            "title": "quick brown fox"
        }
    }
}

混合起来:

### slop 参数告诉 match_phrase 查询词条相隔多远时仍然能将文档视为匹配
GET /my_index/my_type/_search
{
    "query": {
        "match_phrase": {
            "title": {
                "query": "quick fox",
                "slop":  1
            }
        }
    }
}

多值字段:

### 多值字段示例
PUT /my_index/groups/1
{
    "names": [ "John Abraham", "Lincoln Smith"]
}

### position_increment_gap 设置告诉 Elasticsearch 应该为数组中每个新元素增加当前词条 position 的指定值
PUT /my_index/_mapping/groups 
{
    "properties": {
        "names": {
            "type":                "string",
            "position_increment_gap": 100
        }
    }
}

使用邻近度提高相关度:

GET /my_index/my_type/_search
{
  "query": {
    "bool": {
      "must": {
        "match": { 
          "title": {
            "query":                "quick brown fox",
            "minimum_should_match": "30%"
          }
        }
      },
      "should": {
        "match_phrase": { 
          "title": {
            "query": "quick brown fox",
            "slop":  50
          }
        }
      }
    }
  }
}

性能优化:

### 用重评分缩小窗口 优化使用邻近度提高相关度】 
GET /my_index/my_type/_search
{
    "query": {
        "match": {  
            "title": {
                "query":                "quick brown fox",
                "minimum_should_match": "30%"
            }
        }
    },
    "rescore": {
        "window_size": 50, 
        "query": {         
            "rescore_query": {
                "match_phrase": {
                    "title": {
                        "query": "quick brown fox",
                        "slop":  50
                    }
                }
            }
        }
    }
}

寻找相关词:

PUT /my_index
{
    "settings": {
        "number_of_shards": 1,  
        "analysis": {
            "filter": {
                "my_shingle_filter": {
                    "type":             "shingle",
                    "min_shingle_size": 2, 
                    "max_shingle_size": 2, 
                    "output_unigrams":  false   
                }
            },
            "analyzer": {
                "my_shingle_analyzer": {
                    "type":             "custom",
                    "tokenizer":        "standard",
                    "filter": [
                        "lowercase",
                        "my_shingle_filter" 
                    ]
                }
            }
        }
    }
}

### 测试分析器
GET /my_index/_analyze?analyzer=my_shingle_analyzer
Sue ate the alligator

### 多字段使用示例
PUT /my_index/_mapping/my_type
{
    "my_type": {
        "properties": {
            "title": {
                "type": "string",
                "fields": {
                    "shingles": {
                        "type":     "string",
                        "analyzer": "my_shingle_analyzer"
                    }
                }
            }
        }

    }
}

邮编与结构化数据:

PUT /my_index {
  "mappings": {
    "address": {
      "properties": {
        "postcode": {
          "type": "string",
          "index": "not_analyzed"
        }
      }
    }
  }
}

prefix前缀查询:

GET /my_index/address/_search
{
    "query": {
        "prefix": {
            "postcode": "W1"
        }
    }
}

通配符与正则表达式查询:

GET /my_index/address/_search
{
    "query": {
        "wildcard": {
            "postcode": "W?F*HW" 
        }
    }
}


GET /my_index/address/_search
{
    "query": {
        "regexp": {
            "postcode": "W[0-9].+" 
        }
    }
}

查询时输入即搜索:

{
    "match_phrase_prefix" : {
        "brand" : "johnnie walker bl"
    }
}

{
    "match_phrase_prefix" : {
        "brand" : {
            "query": "walker johnnie bl", 
            "slop":  10
        }
    }
}

{
    "match_phrase_prefix" : {
        "brand" : {
            "query":          "johnnie walker bl",
            "max_expansions": 50
        }
    }
}

索引时输入即搜索:

PUT / my_index 
{
    "settings": {
        "number_of_shards": 1,
        "analysis": {
            "filter": {
                "autocomplete_filter": {
                    "type": "edge_ngram",
                    "min_gram": 1,
                    "max_gram": 20
                }
            },
            "analyzer": {
                "autocomplete": {
                    "type": "custom",
                    "tokenizer": "standard",
                    "filter": [
                        "lowercase",
                        "autocomplete_filter"
                    ]
                }
            }
        }
    }
}

### 应用分析器
PUT / my_index / _mapping / my_type 
{
    "my_type": {
        "properties": {
            "name": {
                "type": "string",
                "analyzer": "autocomplete"
            }
        }
    }
}

### 查询
GET / my_index / my_type / _search 
{
    "query": {
        "match": {
            "name": "brown fo"
        }
    }
}

### 查询时设置分析器
GET / my_index / my_type / _search 
{
    "query": {
        "match": {
            "name": {
                "query": "brown fo",
                "analyzer": "standard"
            }
        }
    }
}

### 映射时设置索引和查询分析器
PUT / my_index / my_type / _mapping 
{
    "my_type": {
        "properties": {
            "name": {
                "type": "string",
                "index_analyzer": "autocomplete",
                "search_analyzer": "standard"
            }
        }
    }
}


### 边界 n-grams 与邮编
{
    "analysis": {
        "filter": {
            "postcode_filter": {
                "type": "edge_ngram",
                "min_gram": 1,
                "max_gram": 8
            }
        },
        "analyzer": {
            "postcode_index": {
                "tokenizer": "keyword",
                "filter": ["postcode_filter"]
            },
            "postcode_search": {
                "tokenizer": "keyword"
            }
        }
    }
}

相关度评分背后的理论:

### 禁用词频统计
PUT /my_index
{
  "mappings": {
    "doc": {
      "properties": {
        "text": {
          "type":          "string",
          "index_options": "docs" 
        }
      }
    }
  }
}

### 禁用归一值
PUT /my_index
{
  "mappings": {
    "doc": {
      "properties": {
        "text": {
          "type": "string",
          "norms": { "enabled": false } 
        }
      }
    }
  }
}

Lucene的实用评分函数:

### 禁用协调因子
GET /_search
{
  "query": {
    "bool": {
      "disable_coord": true,
      "should": [
        { "term": { "text": "jump" }},
        { "term": { "text": "hop"  }},
        { "term": { "text": "leap" }}
      ]
    }
  }
}

查询时权重提升:

GET /_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "title": {
              "query": "quick brown fox",
              "boost": 2 ①
            }
          }
        },
        {
          "match": { ②
            "content": "quick brown fox"
          }
        }
      ]
    }
  }
}

### 提升索引权重
GET /docs_2014_*/_search ①
{
  "indices_boost": { ②
    "docs_2014_10": 3,
    "docs_2014_09": 2
  },
  "query": {
    "match": {
      "text": "quick brown fox"
    }
  }
}

使用查询结构修改相关度:

### quick OR brown OR red OR fox
GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "term": { "text": "quick" }},
        { "term": { "text": "brown" }},
        { "term": { "text": "red"   }},
        { "term": { "text": "fox"   }}
      ]
    }
  }
}

### quick OR (brown OR red) OR fox
GET /_search
{
  "query": {
    "bool": {
      "should": [
        { "term": { "text": "quick" }},
        { "term": { "text": "fox"   }},
        {
          "bool": {
            "should": [
              { "term": { "text": "brown" }},
              { "term": { "text": "red"   }}
            ]
          }
        }
      ]
    }
  }
}

Not Quite Not:

### boosting 查询
GET /_search
{
  "query": {
    "boosting": {
      "positive": {
        "match": {
          "text": "apple"
        }
      },
      "negative": {
        "match": {
          "text": "pie tart fruit crumble tree"
        }
      },
      "negative_boost": 0.5
    }
  }
}

忽略 TF/IDF:

### constant_score 查询
GET /_search
{
    "query": {
        "bool": {
            "should": [{
                    "constant_score": {
                        "query": {
                            "match": {
                                "description": "wifi"
                            }
                        }
                    }
                },
                {
                    "constant_score": {
                        "query": {
                            "match": {
                                "description": "garden"
                            }
                        }
                    }
                },
                {
                    "constant_score": {
                        "boost": 2 "query": {
                            "match": {
                                "description": "pool"
                            }
                        }
                    }
                }
            ]
        }
    }
}

按受欢迎度提升权重:

### 将点赞数与全文相关度评分结合
### new_score = old_score * number_of_votes
GET / blogposts / post / _search 
{
    "query": {
        "function_score": {
            "query": {
                "multi_match": {
                    "query": "popularity",
                    "fields": ["title", "content"]
                }
            },
            "field_value_factor": {
                "field": "votes"
            }
        }
    }
}

### modifier
### new_score = old_score * log(1 + number_of_votes)
GET / blogposts / post / _search 
{
    "query": {
        "function_score": {
            "query": {
                "multi_match": {
                    "query": "popularity",
                    "fields": ["title", "content"]
                }
            },
            "field_value_factor": {
                "field": "votes",
                "modifier": "log1p"
            }
        }
    }
}

### factor
### new_score = old_score * log(1 + factor * number_of_votes)
GET / blogposts / post / _search 
{
    "query": {
        "function_score": {
            "query": {
                "multi_match": {
                    "query": "popularity",
                    "fields": ["title", "content"]
                }
            },
            "field_value_factor": {
                "field": "votes",
                "modifier": "log1p",
                "factor": 2
            }
        }
    }
}

### boost_mode
### multiply:评分 _score 与函数值的积(默认)
### sum:评分 _score 与函数值的和
### min:评分 _score 与函数值间的较小值
### max:评分 _score 与函数值间的较大值
### replace:函数值替代评分 _score
GET / blogposts / post / _search 
{
    "query": {
        "function_score": {
            "query": {
                "multi_match": {
                    "query": "popularity",
                    "fields": ["title", "content"]
                }
            },
            "field_value_factor": {
                "field": "votes",
                "modifier": "log1p",
                "factor": 0.1
            },
            "boost_mode": "sum"
        }
    }
}

### max_boost
###  无论 field_value_factor 函数的结果如何,最终结果都不会大于 1.5 
### max_boost 只对函数的结果进行限制,不会对最终评分 _score 产生直接影响
GET /blogposts/post/_search
{
  "query": {
    "function_score": {
      "query": {
        "multi_match": {
          "query":    "popularity",
          "fields": [ "title", "content" ]
        }
      },
      "field_value_factor": {
        "field":    "votes",
        "modifier": "log1p",
        "factor":   0.1
      },
      "boost_mode": "sum",
      "max_boost":  1.5 
    }
  }
}

过滤集提升权重:

### multiply:函数结果求积(默认)。
### sum:函数结果求和。
### avg:函数结果的平均值。
### max:函数结果的最大值。
### min:函数结果的最小值。
### first:使用首个函数(可以有过滤器,也可能没有)的结果作为最终结果
GET /_search
{
  "query": {
    "function_score": {
      "filter": { 
        "term": { "city": "Barcelona" }
      },
      "functions": [ 
        {
          "filter": { "term": { "features": "wifi" }}, 
          "weight": 1
        },
        {
          "filter": { "term": { "features": "garden" }}, 
          "weight": 1
        },
        {
          "filter": { "term": { "features": "pool" }}, 
          "weight": 2 
        }
      ],
      "score_mode": "sum", 
    }
  }
}

随机评分:

### random_score 函数会输出一个 0 到 1 之间的数,当种子 seed 值相同时,生成的随机结果是一致的
### 当然,如果增加了与查询匹配的新文档,无论是否使用一致随机,其结果顺序都会发生变化
GET /_search
{
  "query": {
    "function_score": {
      "filter": {
        "term": { "city": "Barcelona" }
      },
      "functions": [
        {
          "filter": { "term": { "features": "wifi" }},
          "weight": 1
        },
        {
          "filter": { "term": { "features": "garden" }},
          "weight": 1
        },
        {
          "filter": { "term": { "features": "pool" }},
          "weight": 2
        },
        {
          "random_score": { 
            "seed":  "the users session id" 
          }
        }
      ],
      "score_mode": "sum"
    }
  }
}

越近越好:

### 支持linear 、 exp 和 gauss (线性、指数和高斯)
### origin:中心点 或字段可能的最佳值,落在原点 origin 上的文档评分 _score 为满分 1.0 。
### scale:衰减率,即一个文档从原点 origin 下落时,评分 _score 改变的速度。(例如,每 £10 欧元或每 100 米)。
### decay:从原点 origin 衰减到 scale 所得的评分 _score ,默认值为 0.5 。
### offset:以原点 origin 为中心点,为其设置一个非零的偏移量 offset 覆盖一个范围,而不只是单个原点。在范围 -offset <= origin <= +offset 内的所有评分 _score 都是 1.0 。
GET /_search
{
  "query": {
    "function_score": {
      "functions": [
        {
          "gauss": {
            "location": { ①
              "origin": { "lat": 51.5, "lon": 0.12 },
              "offset": "2km",
              "scale":  "3km"
            }
          }
        },
        {
          "gauss": {
            "price": { ②
              "origin": "50", ③
              "offset": "50",
              "scale":  "20"
            }
          },
          "weight": 2 ④
        }
      ]
    }
  }
}

脚本评分:

GET /_search
{
  "function_score": {
    "functions": [
      { ...location clause... }, 
      { ...price clause... }, 
      {
        "script_score": {
          "params": { ②
            "threshold": 80,
            "discount": 0.1,
            "target": 10
          },
          "script": "price  = doc['price'].value; margin = doc['margin'].value;
          if (price < threshold) { return price * margin / target };
          return price * (1 - discount) * margin / target;" 
        }
      }
    ]
  }
}

更改相似度:

## 相似度算法可以按字段指定,只需在映射中为不同字段选定即可
PUT /my_index
{
  "mappings": {
    "doc": {
      "properties": {
        "title": {
          "type":       "string",
          "similarity": "BM25" ①
        },
        "body": {
          "type":       "string",
          "similarity": "default" ②
        }
      }
  }
}

### 配置 BM25
PUT /my_index
{
  "settings": {
    "similarity": {
      "my_bm25": { ①
        "type": "BM25",
        "b":    0 ②
      }
    }
  },
  "mappings": {
    "doc": {
      "properties": {
        "title": {
          "type":       "string",
          "similarity": "my_bm25" ③
        },
        "body": {
          "type":       "string",
          "similarity": "BM25" ④
        }
      }
    }
  }
}

 

 

 

 


posted @ 2020-12-15 11:14  yeren2046  阅读(129)  评论(0编辑  收藏  举报