后台while收发过程

fuse_loop_mt.c 中fuse_do_work函数使用while循环在后台不断运行,每一个while循环中,主要有两个操作。

1. fuse_session_receive_buf(mt->se, &fbuf, &ch);  fuse_session.c 

2. fuse_session_process_buf(mt->se, &fbuf, ch);

 

操作1使用 se->receive_buf(se, buf, chp)读取buffer内容。

操作2使用se->process_buf(se->data, buf, ch);处理buffer内容。

receive_buf和process_buf是两个函数指针,属于fuse_i.h的struct fuse_session的成员。

 

搜索整个源文件,只发现在fuse_lowlevel.c中的struct fuse_session *fuse_lowlevel_new_common有一句

    se->receive_buf = fuse_ll_receive_buf; //fuse_ll_receive_buf函数也在该源文件中。

经过打印发现,就是这个函数在处理接受。

//////fuse_ll_receive_buf函数有个重要的操作是创建pipe, 调用 llp = fuse_ll_get_pipe(f);

////static struct fuse_ll_pipe *fuse_ll_get_pipe(struct fuse_ll *f)函数使用

////  res = pipe(llp->pipe);

/////创建pipe。

这个函数会转到fallback标签,因为 !(f->conn.want & FUSE_CAP_SPLICE_READ) 为真,一个是16,一个是512,与以后为0,取反为真。

于是调用 fuse_chan_recv(struct fuse_chan **chp, char *buf, size_t size 函数。该函数在fuse_session.c中。

在一开始的两个操作中,都有if语句,else是进入 fuse_chan_recv函数,但是那里都没有进入else,而最终还是在这里进入了该函数。

然后调用int res=ch->op.receive(chp, buf, size); 

 

其中ch是struct fuse_chan **类型,定义在fuse_session.c中。op是struct fuse_chan_ops类型,定义在fuse_lowlevel.h中。

但是无法得知receive函数定义在哪,这需要追中ch及op在哪里被赋值。

追踪:

1. ch 在fuse_chan_recv(fuse_session.c)中没有被修改,因此其值从fuse_ll_receive_buf(fuse_lowlevel.c)传递来.

2. 在fuse_ll_receive_buf中仍然没有被修改。

    此处发现,struct fuse_session在fuse_i.h中声明,在fuse_lowlevel.c中给其成员函数指针赋值。

  因此,值从fuse_session_receive_buf(fuse_session.c )中传来。

3.  fuse_session_receive_buf是被fuse_do_work(fuse_loop_mt.c )调用的。

 

现在来看在fuse_do_work中 ch的赋值过程。

1.  回溯 struct fuse_chan *ch = mt->prevch;

    struct fuse_mt *mt = w->mt;

      struct fuse_worker *w = (struct fuse_worker *) data;

  data是由pthread_create(thread_id, &attr, func, arg)   (fuse_loop_mt.c )传递来的。

    追溯到fuse_loop_mt.c 中的fuse_start_thread,这里也是没改变 arg的值,

再追溯到fuse_loop_start_thread(fuse_loop_mt.c )中的 w,这个变量就是元凶。其类型为fuse_worker。以参数形式传递到fuse_do_work中的w。

我们关心的是 w->mt->prevch.

 

2. 

struct fuse_worker {
  struct fuse_worker *prev;
  struct fuse_worker *next;
  pthread_t thread_id;
  size_t bufsize;
  char *buf;
  struct fuse_mt *mt;
};

这里的mt由fuse_session_loop_mt(fuse_loop_mt.c )函数中传入。在该函数中有mt.prevch = fuse_session_next_chan(se, NULL);

struct fuse_session {//se
  struct fuse_session_ops op;

  int (*receive_buf)(struct fuse_session *se, struct fuse_buf *buf, struct fuse_chan **chp);

  void (*process_buf)(void *data, const struct fuse_buf *buf, struct fuse_chan *ch);

  void *data;

  volatile int exited;

  struct fuse_chan *ch;
};

struct fuse_chan *fuse_session_next_chan(struct fuse_session *se, struct fuse_chan *ch)
{
  assert(ch == NULL || ch == se->ch);
  if (ch == NULL)
    return se->ch;
  else
    return NULL;
}

而se是由函数fuse_loop_mt(struct fuse *f) 中传入。res = fuse_session_loop_mt(fuse_get_session(f));

struct fuse_session *fuse_get_session(struct fuse *f)
{
  return f->se;
}

而f是由fuse_main_common(helper.c)中传入。 

struct fuse {
  struct fuse_session *se;
  struct node_table name_table;
  struct node_table id_table;
  struct list_head lru_table;
  fuse_ino_t ctr;
  unsigned int generation;
  unsigned int hidectr;
  pthread_mutex_t lock;
  struct fuse_config conf;
  int intr_installed;
  struct fuse_fs *fs;
  int nullpath_ok;
  int utime_omit_ok;
  struct lock_queue_element *lockq;
  int pagesize;
  struct list_head partial_slabs;
  struct list_head full_slabs;
  pthread_t prune_thread;
};

 

3. fuse_main_common函数中创建struct fuse *fuse;但是由fuse_setup_common)(helper.c)赋值。又由fuse_new_common(fuse.c)赋值 。

    其中f->se = fuse_lowlevel_new_common(args, &llop, sizeof(llop), f);该函数在(fuse_lowlevel.c)中。

我们要找se->ch的赋值。

  

4. 重点来了。

    在fuse.c的fuse_new_common中,fuse_session_add_chan(f->se, ch);给se赋了值。

      那么,这里的ch是哪里来的?

  是fuse_new_common(fuse.c)传来的。并由fuse_mount_common(helper.c)构建,这里使用ch = fuse_kern_chan_new(fd);构建。

在fuse_kern_chan.c中:

struct fuse_chan *fuse_kern_chan_new(int fd)
{
  struct fuse_chan_ops op = {
    .receive = fuse_kern_chan_receive,
    .send = fuse_kern_chan_send,
    .destroy = fuse_kern_chan_destroy,
  };
  size_t bufsize = getpagesize() + 0x1000;
  bufsize = bufsize < MIN_BUFSIZE ? MIN_BUFSIZE : bufsize;
  return fuse_chan_new(&op, fd, bufsize, NULL);
}

  终于名了,最终.receive 函数指针指向的是 fuse_kern_chan_receive函数,在fuse_kern_chan.c中。

 

现在的问题变为,fuse_kern_chan_receive中的read系统调用的fd,即fuse_chan_fd(ch)是从哪里打开的。

1. 我们在回溯一下调用过程。

    fuse_kern_chan_receive

        fuse_mount_common

原来是在fuse_mount_common中调用fuse_mount_compat25打开的。

    fuse_mount_compat25调用 fuse_kern_mount, fuse_kern_mount调用fuse_mount_sys或fuse_mount_fusermount。

以fuse_mount_sys为例,他会打开/dev/fuse,并返回文件描述符。/dev/fuse是一个字符设备。

 

至此,终于清晰了。

posted on 2017-04-25 19:43  longbigfish  阅读(298)  评论(0编辑  收藏  举报

导航