机器学习算法 —— 决策树

算法概述

  • 优点:计算复杂度不高,榆出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
  • 缺点:可能会产生过度匹配问题。
  • 适用数据范围: 数值型标称型

算法流程

  • 数据
    • 样本数据(多维多行数据 + 标签)
    • 预测数据(多维一行数据)

  • 构建决策树
  1. 遍历数据集每一个 feature ,计算信息熵的增益
  2. 选择信息增益最大的 feature 作为树的节点
  3. 数据集按照 feature 值进行分组,对于每一个分组再次进行 1.2.3.递归计算
    • 递归出口
      • 只剩下一个 feature 无法再分
      • labels 都一样,无论 feature 什么样都不影响 labels 了
  • 决策树预测

    • 按照决策树结构进行预测数据的判断直到叶子结点
  • 熵的计算公式

代码示例

import collections
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.font_manager import FontProperties

def calcShannonEnt(dataCol):
    """
    信息熵
    H = -pi * log2( pi )
    pi 为第 i 个值在所有值中出现的概率
    :param dataSet:
    :return:
    """
    labelNum = dataCol.shape[0]
    labelCounts = {}
    for label in dataCol:
        if label not in labelCounts.keys():
            labelCounts[label] = 0
        labelCounts[label] += 1
    entroy = 0.0
    for label, count in labelCounts.items():
        # 标签值在所有值中的概率
        prob = count / labelNum
        entroy -= prob * math.log(prob,2)
    return  entroy

class DecisionTree:

    def __init__(self, dataSet, labels):
        self.tree = self.createTree(dataSet, labels)
        self.numLeafs = self.getNumLeafs(self.tree)
        self.deapth = self.getTreeDepth(self.tree)

    def splitDataSet(self, dataSet, axis, value):
        """
        划分决策树,抽取符合条件的数据
        :param dataSet:
        :param axis:
        :param value:
        :return:
        """
        reDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reDataSet.append(np.hstack((featVec[:axis],featVec[axis+1:])).tolist())
        return np.array(reDataSet)

    def chooseBestFeatureToSplit(self, dataSet):
        """
        选取最优数据集划分方式构建决策树
        :param dataSet:
        :return:
        """
        numFeatures = len(dataSet[0]) - 1
        baseEntropy = calcShannonEnt(dataSet[:,-1])
        bestInfoGain, bestFeature = 0.0, -1
        for i in range(numFeatures):
            featList = dataSet[:,i]
            uniqueVals = set(featList)
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = self.splitDataSet(dataSet, i, value)
                prob = len(subDataSet) / len(dataSet)
                # 熵 = 选择的决策占比概率 *
                newEntropy += prob * calcShannonEnt(subDataSet[:,-1])
            infoGain = baseEntropy - newEntropy
            if(infoGain > bestInfoGain):
                bestInfoGain = infoGain
                bestFeature = i
        return bestFeature

    def majorityCnt(self,classList):
        """
        找到出现次数最多的 class
        :param classList:
        :return:
        """
        return collections.Counter(classList).most_common(1)[0][0]
        # classCount = {}
        # for vote in classList:
        #     if vote not in classCount.keys():
        #         classCount[vote] = 0
        #     classCount[vote] += 1
        # sortedClassCount = sorted(classCount.items(), key=lambda x: x[1], reverse=True)
        # return sortedClassCount[0][0]

    def createTree(self, dataSet, labels):
        """
        构建决策树
        :param dataSet:
        :param labels:
        :return:
        """
        classList = dataSet[:,-1]
        # 如果所有数据的 feature 都一样,返回 feature
        if np.unique(classList).size == 1:
            return classList[0]
        # 如果只有一个 feature ,返回出现最多的 class
        if len(dataSet[0]) == 1:
            return self.majorityCnt(classList)
        # 选择一个 feature,使得信息增益最大
        bestFeat = self.chooseBestFeatureToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        myTree = {bestFeatLabel:{}}
        del(labels[bestFeat])
        # 取出这个 feature 下的所有 class 作为分类标准
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            subLabels = labels[:]
            # 递归创建决策树
            myTree[bestFeatLabel][value] = self.createTree(
                self.splitDataSet(dataSet, bestFeat, value), subLabels)
        return myTree

    def getNumLeafs(self, myTree):
        numLeafs = 0                                   #初始化叶子
        # firstStr = list(myTree.keys())[0]
        firstStr = next(iter(myTree))
        secondDict = myTree[firstStr]                 #获取下一组字典
        for key in secondDict.keys():
            if isinstance(secondDict[key], dict):
                numLeafs += self.getNumLeafs(secondDict[key])
            else:   numLeafs +=1
        return numLeafs

    def getTreeDepth(self, myTree):
        maxDepth = 0                                          #初始化决策树深度
        firstStr = next(iter(myTree))
        secondDict = myTree[firstStr]                         #获取下一个字典
        for key in secondDict.keys():
            if isinstance(secondDict[key], dict):        #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
                thisDepth = 1 + self.getTreeDepth(secondDict[key])
            else:
                thisDepth = 1
            if thisDepth > maxDepth:
                maxDepth = thisDepth     #更新层数
        return maxDepth

    def classify(self, inputTree, labels, testVec):
        """
        分类预测
        :param inputTree: 决策树
        :param labels: 数据标签
        :param testVec: 测试数据
        :return:
        """
        firstStr = next(iter(inputTree))      #获取决策树结点
        secondDict = inputTree[firstStr]      #下一个字典
        featIndex = labels.index(firstStr)
        for key in secondDict.keys():
            if str(testVec[featIndex]) == key:
                if isinstance(secondDict[key],dict):
                    classLabel = self.classify(secondDict[key], labels, testVec)
                else: classLabel = secondDict[key]
        return classLabel

if __name__ == "__main__":
    dataSet = [[0, 0, 0, 0, 'no'],  # 数据集
               [0, 0, 0, 1, 'no'],
               [0, 1, 0, 1, 'yes'],
               [0, 1, 1, 0, 'yes'],
               [0, 0, 0, 0, 'no'],
               [1, 0, 0, 0, 'no'],
               [1, 0, 0, 1, 'no'],
               [1, 1, 1, 1, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [2, 0, 1, 2, 'yes'],
               [2, 0, 1, 1, 'yes'],
               [2, 1, 0, 1, 'yes'],
               [2, 1, 0, 2, 'yes'],
               [2, 0, 0, 0, 'no']]
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']  # 特征标签
    DTree = DecisionTree(np.array(dataSet), labels[:])
    print("tree:\t",DTree.tree)
    print("leaf nums:\t",DTree.numLeafs)
    print("deapth:\t",DTree.deapth)
    print("classify:\t", DTree.classify(DTree.tree, labels, [3,1,0,"yes"]))


posted @ 2020-10-12 22:02  蔺昌黎  阅读(105)  评论(0编辑  收藏  举报