Subarray/Submatrix Target Sum
Leetcode 560. Subarray Sum Equals K
求一个数组中和等于k的子数组的个数
分析:prefix sum + map,当前的prefix sum为cur,之前出现过的prefix sum存到counter中(因为存在负数,可能有多个prefix sum相等,因此counter[x]表示prefix sum == x的个数),
则以当前点为endpoint的子数组和等于K的个数为counter[cur - k]
time O(n)
space O(n)
class Solution { public: int subarraySum(vector<int>& nums, int k) { int res = 0, cur = 0; unordered_map<int, int> counter; counter[0] = 1; for(int i = 0; i < nums.size(); ++i){ cur += nums[i]; res += counter[cur - k]; counter[cur]++; } return res; } };
Leetcode 1074. Number of Submatrices That Sum to Target
求一个矩阵中和等于target的子矩阵的个数
分析:矩阵每一行,计算prefix sum,然后对于任意两列,计算行的累加和,问题就转换为了Subarray Sum Equals K
time O($n^3$)
space O(n)
class Solution { public: int numSubmatrixSumTarget(vector<vector<int>>& matrix, int target) { int m = matrix.size(), n = matrix[0].size(); for(int i = 0; i < m; ++i){ for(int j = 1; j < n; ++j){ matrix[i][j] += matrix[i][j - 1]; } } int res = 0; for(int i = 0; i < n; ++i){ for(int j = i; j < n; ++j){ //计算列i与列j之间且宽为j-i+1的所有和等于target的子矩阵个数 //等价与将问题转换为了Subarray Sum Equals K unordered_map<int, int> counter; counter[0] = 1; int cur = 0; for(int k = 0; k < m; ++k){ cur += matrix[k][j] - (i > 0 ? matrix[k][i - 1] : 0); res += counter[cur - target]; counter[cur]++; } } } return res; } };