hdu1016 Prime Ring Problem 深搜dfs

Prime Ring Problem

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 58187    Accepted Submission(s): 25285


Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.


 

Input
n (0 < n < 20).
 

Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.
 

Sample Input
6 8
 

Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2



给定数字1-n
填入n个格子里面,要求每个数字与相邻的数字和为素数,第一个和最后一个数字和也是素数且第一位必须为1
其实还有个有趣的规律




当 n为奇数且n不为1时,不能满足这个条件,也就是说一个也打印不出来


AC代码如下

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define maxn 50  //因为n<20所以可能的最大两个数的和为20+19,这里开50够用了


int a[maxn];
int v[maxn];
int n;
int t = 1;//打印Case t:


int prime[maxn];


void Prime() {      //素数打表
    prime[1] = 1;
    for(int i = 2; i *i <maxn; i++)
        if(!prime[i])
            for(int j = i*i; j < maxn; j += i)
                prime[j] = 1;
}


void Type() {                       //如果满足了所有条件,打印该数组
    for(int i = 1; i <= n; i++) {
        if(i > 1)
            printf(" ");
        printf("%d",a[i]);
    }
    printf("\n");
}
void dfs(int q) {
    if(q == n+1 && !prime[a[q-1] + a[1]]) {     //判断是不是到了最后一个数 && 最后一个数和第一个数的和是素数
        Type();                                 //是证明满足条件,打印
        return;
    }
    for(int i = 2; i <= n; i++) {               //因为第一位1是固定的,所以从2开始
        if(!v[i] && !prime[i + a[q-1]]) {
            a[q] = i;                           //往数组里填数
            v[i]= 1;
            dfs(q+1);
            v[i] = 0;                           //这里我卡了较长时间,其实就是每个递归栈返回后才会进行这一步
                                                //每个递归函数返回时都会将该位的数清0,也就保证了每个数只能拿一次
                                                //且每个数都会被拿一次
        }
    }
}








int main() {                        //主函数里都很简单,就不解释了
    Prime();
    while(~scanf("%d",&n)) {
        memset(a,0,sizeof(a));
        memset(v,0,sizeof(v));
        printf("Case %d:\n",t);
        t++;
        a[1] = 1;
        v[1] = 1;
        dfs(2);
        printf("\n");
    }
    return 0;
}





还有其他类似的搜索题,链接如下:

Oil Deposits http://blog.csdn.net/bestsort/article/details/79237415


posted @ 2018-02-02 15:28  秃头大师  阅读(113)  评论(0编辑  收藏  举报