板子

目录

基本缺省源超快读入/输出模大质数常用函数浮点数常用函数随机数据生成器对拍器
网络流最大流最小费用最大流有源汇有上下界最大流有源汇有上下界最小流无源汇有上下界最小费用可行流
字符串扩展 KMP后缀排序(SA-IS 算法)后缀自动机后缀树
数据结构并查集配对堆树状数组动态树
图论重链剖分长链剖分求 \(k\) 级祖先虚树稳定婚姻(Gale-Shapley 算法)二分图最大匹配一般图最大匹配
数论数论基本操作原根离散对数欧拉筛万能欧几里得算法
多项式多项式基本操作多项式求导/积分\(O\left(n\log n\right)\) 多项式乘法\(O\left(n^2\right)\) 多项式乘法\(O\left(n\log n\right)\) 多项式求逆\(O\left(n^2\right)\) 多项式取模\(O\left(n\log n\right)\) 多项式 \(\ln\)\(O\left(n^2\right)\) 多项式 \(\ln\)\(O\left(n\log n\right)\) 多项式 \(\exp\)\(O\left(n^2\right)\) 多项式 \(\exp\)
线性代数矩阵基本操作拟阵交带删除线性基
二维计算几何二维计算几何基本操作圆和直线交点圆和一顶点在圆心的三角形的面积交圆和多边形的面积交二维凸包多边形面积凸包和半平面的面积交三角形外接圆
三维计算几何三维计算几何基本操作\(O\left(n^2\right)\) 三维凸包

基本

缺省源

#include <bits/stdc++.h>

#define mp std::make_pair
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define gc getchar
#define pc putchar

typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef std::pair <int, int> pii;
typedef std::pair <ll, ll> pll;

int read_int() {
	char c = gc(); int ans = 0; bool neg = false;
	while (!isdigit(c)) neg |= (c == '-'), c = gc();
	while (isdigit(c)) ans = 10 * ans + c - '0', c = gc();
	return neg ? -ans : ans;
}

void write_int(int x) {
	if (x < 0) pc('-'), x = -x;
	if (x > 9) write_int(x / 10);
	pc(x % 10 + '0');
}

int min(int x, int y) {return x < y ? x : y;}
int max(int x, int y) {return x > y ? x : y;}
void _min(int &x, int y) {if (x > y) x = y;}
void _max(int &x, int y) {if (x < y) x = y;}

超快读入/输出

#undef gc
#undef pc
namespace io {
	const int SIZE = (1 << 21) + 1;
	char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1;
	inline char gc() {return (iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS++)) : *iS++);}
	inline void flush() {fwrite(obuf, 1, oS - obuf, stdout); oS = obuf;}
	inline void pc(char x) {*oS++ = x; if (oS == oT) flush();}
	struct _flush {~_flush() {flush();}} __flush;
}
using io::gc; using io::pc;

模大质数常用函数

ll fact[?], finv[?];
int fact_size = -1;

int plus(int x, int y) {return (x += y) >= mod ? x - mod : x;}
int minus(int x, int y) {return (x -= y) < 0 ? x + mod : x;}
int mul(int x, int y) {return (ll)x * y % mod;}
int fma(int x, int y, int z) {return (x + (ll)y * z) % mod;}
int fms(int x, int y, int z) {return (x + (ll)(mod - y) * z) % mod;}
int neg(int x) {return x == 0 ? 0 : mod - x;}
void _plus(int &x, int y) {if ((x += y) >= mod) x -= mod;}
void _minus(int &x, int y) {if ((x -= y) < 0) x += mod;}
void _mul(int &x, int y) {x = (ll)x * y % mod;}
void _fma(int &x, int y, int z) {x = (x + (ll)y * z) % mod;}
void _fms(int &x, int y, int z) {x = (x + (ll)(mod - y) * z) % mod;}
void _neg(int &x) {if (x) x = mod - x;}

int normal(int x) {return x < 0 ? x + mod : x;}

ll inv(int x) {
	if (x <= fact_size) return fact[x - 1] * finv[x] % mod;
	return x == 1 ? 1 : (mod - mod / x) * inv(mod % x) % mod;
}

ll sqr(int x) {return (ll)x * x % mod;}
ll sign(int x) {return x & 1 ? mod - 1 : 1;}
ll binom(int x, int y) {return x < y || y < 0 ? 0 : fact[x] * finv[y] % mod * finv[x - y] % mod;}
ll inv_binom(int x, int y) {return finv[x] * fact[y] % mod * fact[x - y] % mod;}
ll merge2(int x, int y) {return fact[x + y] * finv[x] % mod * finv[y] % mod;}
ll merge3(int x, int y, int z) {return fact[x + y + z] * finv[x] % mod * finv[y] % mod * finv[z] % mod;}

ll power(ll x, int y, ll ans = 1) {
	for (; y; y >>= 1, x = x * x % mod)
		if (y & 1) ans = ans * x % mod;
	return ans;
}

void init_fact(int n) {
	fact[0] = finv[0] = 1;
	for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * i % mod;
	finv[n] = inv(fact[n]);
	for (int i = n; i >= 1; i--) finv[i - 1] = finv[i] * i % mod;
	fact_size = n;
}

浮点数常用函数

bool le(ld x, ld y) {return x <= y + eps;}
bool ge(ld x, ld y) {return x >= y - eps;}
bool lt(ld x, ld y) {return x < y - eps;}
bool gt(ld x, ld y) {return x > y + eps;}
bool eq(ld x, ld y) {return le(x, y) && ge(x, y);}
ld sqr(ld x) {return x * x;}

随机数据生成器

std::mt19937_64 rnd(std::chrono::steady_clock::now().time_since_epoch().count());
int Random(int l, int r) {return rnd() % (r - l + 1) + l;}

对拍器

#include <bits/stdc++.h>
int test, gap = ?;
int main() {
	while (true) {
		system("?.exe"); double time_S = clock();
		system("?.exe"); double time_T = clock();
		system("?.exe");
		if (system("fc ?.out ?.out > nul")) break;
		if (++test % gap == 0)
			printf("test %6d: Accepted! use time : %.5lf second\n", test, (time_T - time_S) / CLOCKS_PER_SEC);
	}
	printf("test %6d: Wrong Answer!\n", ++test);
	return 0;
}

网络流

最大流

namespace maxflow {
	const int max_N = ?, max_E = ?, INF = 2e9;
	int nxt[2 * max_E], head[max_N], to[2 * max_E], cap[2 * max_E], tot;
	int dist[max_N], _head[max_N], n, S, T;

	void init(int _n, int _S, int _T) {
		n = _n, S = _S, T = _T, tot = 1;
		std::fill(head + 1, head + n + 1, 0);
	}

	void add_edge(int u, int v, int w) {
		if (!w) return;
		nxt[++tot] = head[u], head[u] = tot, to[tot] = v, cap[tot] = w;
		nxt[++tot] = head[v], head[v] = tot, to[tot] = u, cap[tot] = 0;
	}

	bool BFS() {
		std::fill(dist + 1, dist + n + 1, INF);
		std::queue <int> Q; Q.push(S); dist[S] = 0;
		while (!Q.empty()) {
			int cur = Q.front(); Q.pop();
			for (int i = head[cur]; i; i = nxt[i])
				if (cap[i] > 0 && dist[to[i]] == INF)
					dist[to[i]] = dist[cur] + 1, Q.push(to[i]);
		}
		return dist[T] < INF;
	}

	int dfs(int x, int low) {
		if (x == T) return low; int used = 0, tmp;
		for (int &i = _head[x]; i; i = nxt[i])
			if (cap[i] > 0 && dist[to[i]] == dist[x] + 1) {
				tmp = dfs(to[i], min(low - used, cap[i]));
				if (tmp > 0) used += tmp, cap[i] -= tmp, cap[i ^ 1] += tmp;
				if (used == low) break;
			}
		return used;
	}

	int solve() {
		int ans = 0;
		while (BFS()) std::copy(head + 1, head + n + 1, _head + 1), ans += dfs(S, INF);
		return ans;
	}
}

最小费用最大流

namespace costflow {
	const int max_N = ?, max_E = ?, INF = 2e9;
	int nxt[2 * max_E], head[max_N], to[2 * max_E], cap[2 * max_E], cost[2 * max_E], dist[max_N], _head[max_N];
	int n, S, T, tot, maxflow, mincost;
	bool inq[max_N], vis[max_N];

	void init(int _n, int _S, int _T) {
		n = _n, S = _S, T = _T, tot = 1;
		std::fill(head + 1, head + n + 1, 0);
	}

	void add_edge(int u, int v, int w, int _cost) {
		if (!w) return;
		nxt[++tot] = head[u], head[u] = tot, to[tot] = v, cap[tot] = w, cost[tot] = _cost;
		nxt[++tot] = head[v], head[v] = tot, to[tot] = u, cap[tot] = 0, cost[tot] = -_cost;
	}

	bool SPFA() {
		std::fill(dist + 1, dist + n + 1, INF);
		std::queue <int> Q; Q.push(T); dist[T] = 0, inq[T] = true;
		while (!Q.empty()) {
			int cur = Q.front(); Q.pop(); inq[cur] = false;
			for (int i = head[cur]; i; i = nxt[i])
				if (cap[i ^ 1] > 0 && dist[to[i]] > dist[cur] - cost[i]) {
					dist[to[i]] = dist[cur] - cost[i];
					if (!inq[to[i]]) Q.push(to[i]), inq[to[i]] = true;
				}
		}
		return dist[S] < INF;
	}

	int dfs(int x, int low) {
		if (x == T) return low; vis[x] = true; int used = 0, tmp;
		for (int &i = _head[x]; i; i = nxt[i])
			if (cap[i] > 0 && dist[to[i]] == dist[x] - cost[i] && !vis[to[i]]) {
				tmp = dfs(to[i], min(low - used, cap[i]));
				if (tmp > 0) cap[i] -= tmp, cap[i ^ 1] += tmp, used += tmp, mincost += tmp * cost[i];
				if (used == low) break;
			}
		return used;
	}

	void solve() {
		maxflow = mincost = 0;
		while (SPFA())
			std::copy(head + 1, head + n + 1, _head + 1),
			std::fill(vis + 1, vis + n + 1, false),
			maxflow += dfs(S, INF);
	}
}

有源汇有上下界最大流

namespace bounded_maxflow {
	int n, S, T, deg[maxflow::max_N];

	void init(int _n, int _S, int _T) {
		n = _n, S = _S, T = _T;
		std::fill(deg + 1, deg + n + 1, 0);
		maxflow::init(n + 2, n + 1, n + 2);
	}

	void add_edge(int u, int v, int l, int r) {
		deg[u] -= l, deg[v] += l, maxflow::add_edge(u, v, r - l);
	}

	int solve() {
		int sum = 0;
		for (int i = 1; i <= n; i++) {
			if (deg[i] > 0) maxflow::add_edge(n + 1, i, deg[i]), sum += deg[i];
			if (deg[i] < 0) maxflow::add_edge(i, n + 2, -deg[i]);
		}
		maxflow::add_edge(T, S, maxflow::INF);
		if (maxflow::solve() != sum) return -1;
		for (int i = 1; i <= n; i++)
			for (int j = maxflow::head[i]; j; j = maxflow::nxt[j])
				if (maxflow::to[j] > n) maxflow::cap[j] = maxflow::cap[j ^ 1] = 0;
		return maxflow::S = S, maxflow::T = T, maxflow::solve();
	}
}

有源汇有上下界最小流

namespace bounded_minflow {
	int n, S, T, deg[maxflow::max_N];

	void init(int _n, int _S, int _T) {
		n = _n, S = _S, T = _T;
		std::fill(deg + 1, deg + n + 1, 0);
		maxflow::init(n + 2, n + 1, n + 2);
	}

	void add_edge(int u, int v, int l, int r) {
		deg[u] -= l, deg[v] += l, maxflow::add_edge(u, v, r - l);
	}

	int solve() {
		int sum = 0;
		for (int i = 1; i <= n; i++) {
			if (deg[i] > 0) maxflow::add_edge(n + 1, i, deg[i]), sum += deg[i];
			if (deg[i] < 0) maxflow::add_edge(i, n + 2, -deg[i]);
		}
		int tmp = maxflow::solve();
		maxflow::add_edge(T, S, maxflow::INF);
		if (tmp + maxflow::solve() != sum) return -1;
		return sum - tmp;
	}
}

无源汇有上下界最小费用可行流

namespace bounded_costflow {
	int n, S, T, deg[costflow::max_N], ans;
	bool ok;

	void init(int _n, int _S, int _T) {
		n = _n, S = _S, T = _T;
		std::fill(deg + 1, deg + n + 1, 0);
		costflow::init(n + 2, n + 1, n + 2);
	}

	void add_edge(int u, int v, int l, int r, int _cost) {
		ans += l * _cost, deg[u] -= l, deg[v] += l;
		costflow::add_edge(u, v, r - l, _cost);
	}

	void solve() {
		int sum = 0;
		for (int i = 1; i <= n; i++) {
			if (deg[i] > 0) costflow::add_edge(n + 1, i, deg[i], 0), sum += deg[i];
			if (deg[i] < 0) costflow::add_edge(i, n + 2, -deg[i], 0);
		}
		costflow::solve();
		if (ok = (costflow::maxflow == sum)) ans += costflow::mincost;
	}
}

字符串

扩展 KMP

namespace exKMP {
	const int max_N = ?;
	char A[max_N];
	int n, nxt[max_N], extend[max_N];

	void get_nxt() {
		n = strlen(A + 1); nxt[1] = n;
		if (n > 1) nxt[2] = std::mismatch(A + 2, A + n + 1, A + 1).fi - (A + 2);
		for (int i = 3, tmp = 2; i <= n; i++) {
			nxt[i] = max(0, min(nxt[i - tmp + 1], nxt[tmp] + tmp - i));
			nxt[i] = std::mismatch(A + i + nxt[i], A + n + 1, A + nxt[i] + 1).fi - (A + i);
			if (i + nxt[i] > tmp + nxt[tmp]) tmp = i;
		}
	}

	void get_extend(char *B, int m) {
		extend[1] = std::mismatch(A + 1, A + n + 1, B + 1).fi - (A + 1);
		for (int i = 2, tmp = 1; i <= m; i++) {
			extend[i] = max(0, min(nxt[i - tmp + 1], tmp + extend[tmp] - i));
			extend[i] = std::mismatch(B + i + extend[i], B + m + 1, A + extend[i] + 1).fi - (B + i);
			if (i + extend[i] > tmp + extend[tmp]) tmp = i;
		}
	}
}

后缀排序(SA-IS 算法)

namespace suffix_sort {
	const int max_N = 2 * ::max_N;

	int n, X[max_N], sa[max_N], rank[max_N], height[max_N], s[max_N];
	bool type[max_N];

	void induce_sort(int *s, bool *type, int n, int m, int *X, int X_size) {
		static int cnt[max_N], pos[max_N];
		std::fill(cnt + 1, cnt + m + 1, 0);
		std::fill( sa + 1,  sa + n + 1, 0);
		for (int i = 1; i <= n; i++) cnt[s[i]]++;
		std::partial_sum(cnt + 1, cnt + m + 1, cnt + 1);
		std::copy(cnt + 1, cnt + m + 1, pos + 1);
		for (int i = X_size; i; i--) sa[pos[s[X[i]]]--] = X[i];
		std::copy(cnt, cnt + m, pos + 1);
		for (int i = 1; i <= n; i++)
			if (sa[i] > 1 &&  type[sa[i] - 1])
				sa[++pos[s[sa[i] - 1]]] = sa[i] - 1;
		for (int i = n; i >= 1; i--)
			if (sa[i] > 1 && !type[sa[i] - 1])
				sa[cnt[s[sa[i] - 1]]--] = sa[i] - 1;
	}

	void SAIS(int *s, bool *type, int *X, int n, int m) {
		int X_size = 0; type[n] = false;
		for (int i = n - 1; i >= 1; i--)
			type[i] = (s[i] == s[i + 1] ? type[i + 1] : s[i] > s[i + 1]);
		if (std::find(type + 1, type + n + 1, true) == type + n + 1)
			return std::iota(sa + 1, sa + n + 1, 1);
		std::fill(rank + 1, rank + n + 1, 0);
		for (int i = 2; i <= n; i++)
			if (type[i - 1] && !type[i]) X[rank[i] = ++X_size] = i;
		induce_sort(s, type, n, m, X, X_size);
		int *_s = s + n, next_m = 0;
		for (int i = 1, j = 0, k = 0; i <= n; i++) {
			if (!(k = rank[sa[i]])) continue;
			if (!j || j == X_size || k == X_size || X[j + 1] - X[j] != X[k + 1] - X[k] ||
				!std::equal(s + X[j], s + X[j + 1] + 1, s + X[k])) next_m++;
			_s[k] = next_m, j = k;
		}
		if (next_m < X_size) SAIS(_s, type + n + 1, X + n + 1, X_size, next_m);
		else for (int i = 1; i <= X_size; i++) sa[_s[i]] = i;
		for (int i = 1; i <= X_size; i++) _s[i] = X[sa[i]];
		induce_sort(s, type, n, m, _s, X_size);
	}

	void solve() {
		for (int i = 1; i <= n; i++) s[i]++; s[++n] = 1;
		SAIS(s, type, X, n, *std::max_element(s + 1, s + n + 1));
		for (int i = 1; i <= n; i++) s[i]--; n--;
		for (int i = 1; i <= n; i++) sa[i] = sa[i + 1];
		for (int i = 1; i <= n; i++) rank[sa[i]] = i;
	}

	void get_height() {
		for (int i = 1, j = 0, k; i <= n; i++) {
			if (j > 0) j--;
			if (rank[i] > 1) {
				k = sa[rank[i] - 1];
				while (i + j <= n && k + j <= n && s[i + j] == s[k + j]) j++;
				height[i] = j;
			}
		}
	}
}

后缀自动机

namespace SAM {
	const int max_N = 2 * ?, max_S = ?;
	int fa[max_N], trans[max_N][max_S], len[max_N];
	int p, np, q, nq, cnt;

	void init() {
		std::fill(fa + 1, fa + cnt + 1, 0);
		std::fill(len + 1, len + cnt + 1, 0);
		for (int i = 1; i <= cnt; i++)
			std::fill(trans[i], trans[i] + max_S, 0);
		cnt = np = 1;
	}

	void extend(int x) {
		p = np, np = ++cnt; len[np] = len[p] + 1;
		while (p && !trans[p][x]) trans[p][x] = np, p = fa[p];
		if (!p) {fa[np] = 1; return;} q = trans[p][x];
		if (len[q] == len[p] + 1) {fa[np] = q; return;}
		nq = ++cnt; std::copy(trans[q], trans[q] + max_S, trans[nq]);
		len[nq] = len[p] + 1, fa[nq] = fa[q], fa[q] = fa[np] = nq;
		while (p && trans[p][x] == q) trans[p][x] = nq, p = fa[p];
	}
}

后缀树

namespace suffix_tree {
	int pos[SAM::max_N];
	int son[SAM::max_N][SAM::max_S], right[SAM::max_N];
	bool vis[SAM::max_N];

	void init(int n) {
		std::fill(pos + 1, pos + 2 * n + 1, 0);
		std::fill(right + 1, right + 2 * n + 1, 0);
		std::fill(vis + 1, vis + 2 * n + 1, false);
		for (int i = 1; i <= 2 * n; i++)
			std::fill(son[i], son[i] + SAM::max_S, 0);
		SAM::init(n);
	}

	void dfs(int x) {
		for (int i = 0; i < SAM::max_S; i++) if (son[x][i])
			dfs(son[x][i]), right[x] += right[son[x][i]];
	}

	void build(char *s, int n) {
		init(n);
		for (int i = n; i; i--)
			SAM::extend(s[i]), pos[SAM::np] = i, right[SAM::np] = 1;
		for (int i = 1; i <= SAM::cnt; i++) if (pos[i])
			for (int j = SAM::fa[i], k = i; j && !vis[k]; k = j, j = SAM::fa[j])
				pos[j] = pos[i], son[j][s[pos[i] + SAM::len[j]]] = k, vis[k] = true;
		dfs(1);
	}
}

数据结构

并查集

namespace DSU {
	const int max_N = ?;
	int fa[max_N], size[max_N];

	void init(int n) {
		std::iota(fa + 1, fa + n + 1, 1);
		std::fill(size + 1, size + n + 1, 1);
	}

	int anc(int x) {return fa[x] == x ? x : fa[x] = anc(fa[x]);}

	void link(int x, int y) {
		if ((x = anc(x)) != (y = anc(y))) {
			if (size[x] > size[y]) std::swap(x, y);
			fa[x] = y, size[y] += size[x];
		}
	}

	bool connected(int x, int y) {return anc(x) == anc(y);}

	int num() {
		int ans = 0;
		for (int i = 1; i <= n; i++) ans += (fa[i] == i);
		return ans;
	}
}

配对堆

namespace pairing_heap {
	const int max_N = ?;
	int son[max_N][2], root[max_N], val[max_N];

	void change(int rt, int x) {?}

	void pushdown(int rt) {?}

	int merge(int x, int y) {
		if (!x || !y) return x | y;
		pushdown(x), pushdown(y);
		if (val[x] > val[y]) std::swap(x, y);
		return son[y][1] = son[x][0], son[x][0] = y, x;
	}

	void link(int x, int y) {root[y] = merge(x, root[y]);}

	int del(int rt) {
		pushdown(rt);
		int x = son[rt][0], y = son[x][1];
		if (!x) return 0; if (!y) return x;
		pushdown(x), pushdown(y);
		son[rt][0] = son[y][1], son[x][1] = son[y][1] = 0;
		return merge(merge(x, y), del(rt));
	}

	void pop(int x) {root[x] = del(root[x]);}
}

树状数组

namespace BIT {
	const int max_N = ?;
	int n, A[max_N];
	void init(int _n) {n = _n, std::fill(A + 1, A + n + 1, 0);}
	void modify(int x, int y) {while (x <= n) A[x] += y, x += (x & -x);}
	int query(int x) {int ans = 0; while (x) ans += A[x], x &= (x - 1); return ans;}
}

动态树

namespace LCT {
	const int max_N = ?;
	int son[max_N][2], fa[max_N];
	bool rev[max_N];

	int dir(int x) {
		if (son[DSU::anc(fa[x])][0] == x) return 0;
		if (son[DSU::anc(fa[x])][1] == x) return 1;
		return -1;
	}

	void push_up(int x) {?}

	void add_tag(int x) {if (x) rev[x] = !rev[x], std::swap(son[x][0], son[x][1]);}

	void push_down(int x) {
		if (rev[x]) add_tag(son[x][0]), add_tag(son[x][1]), rev[x] = false;
	}

	void pull_down(int x) {if (dir(x) != -1) pull_down(DSU::anc(fa[x])); push_down(x);}

	void rotate(int x) {
		int f = fa[x], ff = fa[f], k = dir(x);
		son[f][k] = son[x][k ^ 1], fa[son[x][k ^ 1]] = f;
		if (dir(f) != -1) son[ff][dir(f)] = x; fa[x] = ff;
		son[x][k ^ 1] = f, fa[f] = x; push_up(f), push_up(x);
	}

	void splay(int x) {
		pull_down(x);
		for (int y = fa[x]; dir(x) != -1; rotate(x), y = fa[x])
			if (dir(y) != -1) rotate(dir(x) == dir(y) ? y : x);
	}

	void access(int x) {
		for (int y = 0; x; x = fa[y = x]) splay(x), son[x][1] = y, push_up(x);
	}

	void make_root(int x) {
		access(x), splay(x), add_tag(x);
	}

	void link(int x, int y) {
		make_root(x), make_root(y), fa[x] = y;
	}

	void cut(int x, int y) {
		make_root(x), access(y), splay(x);
		son[x][1] = fa[y] = 0, push_up(x);
	}

	int find_root(int x) {
		access(x), splay(x);
		while (son[x][0]) x = son[x][0], push_down(x);
		return splay(x), x;
	}
}

图论

重链剖分

void dfs1(int x = 1) {
	size[x] = 1, dep[x] = dep[fa[x]] + 1;
	for (int i : T[x]) {
		if (i == fa[x]) continue;
		fa[i] = x, dfs1(i), size[x] += size[i];
		if (size[i] > size[son[x]]) son[x] = i;
	}
}

void dfs2(int x = 1, int _top = 1) {
	Idfn[dfn[x] = ++*dfn] = x, top[x] = _top;
	if (!son[x]) return; dfs2(son[x], _top);
	for (int i : T[x])
		if (i != fa[x] && i != son[x]) dfs2(i, i);
}

int LCA(int x, int y) {
	while (top[x] != top[y])
		(dep[top[x]] < dep[top[y]]) ? (y = fa[top[y]]) : (x = fa[top[x]]);
	return dep[x] < dep[y] ? x : y;
}

int dist(int x, int y) {return dep[x] + dep[y] - 2 * dep[LCA(x, y)];}

int kth(int x, int k) {
	int t = dep[x] - k;
	while (dep[top[x]] > t) x = fa[top[x]];
	return Idfn[dfn[x] - (dep[x] - t)];
}

长链剖分求 \(k\) 级祖先

namespace kth_ancestor {
	const int max_N = ?, max_logN = ?;
	int fa[max_N][max_logN], maxd[max_N], log_2[max_N], dep[max_N], son[max_N], top[max_N];
	std::vector <int> vec[max_N][2];

	void dfs1(int x) {
		dep[x] = dep[fa[x][0]] + 1;
		for (int i = 1; i <= log_2[dep[x]]; i++)
			fa[x][i] = fa[fa[x][i - 1]][i - 1];
		for (int i : T[x]) {
			fa[i][0] = x, dfs1(i);
			if (maxd[x] <= maxd[i]) maxd[x] = maxd[i] + 1, son[x] = i;
		}
	}

	void dfs2(int x, int _top) {
		top[x] = _top;
		if (x == _top) {
			vec[x][0].reserve(maxd[x] + 1); vec[x][1].reserve(maxd[x] + 1);
			for (int i = 0, j = x; i <= maxd[x]; i++, j = son[j]) vec[x][0].pb(j);
			for (int i = 0, j = x; i <= maxd[x] && j; i++, j = fa[j][0]) vec[x][1].pb(j);
		}
		if (!son[x]) return; dfs2(son[x], _top);
		for (int i : T[x]) if (i != son[x]) dfs2(i, i);
	}

	int kth(int x, int k) {
		if (k >= dep[x]) return rt; if (k == 0) return x;
		int y = top[fa[x][log_2[k]]], d = dep[y] - (dep[x] - k);
		return d < 0 ? vec[y][0][-d] : vec[y][1][d];
	}

	void init() {
		for (int i = 2; i <= n; i++)
			log_2[i] = log_2[i - 1] + (i == (i & -i));
		dfs1(rt), dfs2(rt, rt);
	}
}

虚树

namespace virtual_tree {
	const int max_N = ?;
	int nxt[max_N], head[max_N], to[max_N], st[max_N], top, tot, rt;
	std::vector <int> V, vis;

	void init() {
		top = tot = 0; for (int i : vis) head[i] = 0; vis = V;
		std::sort(V.begin(), V.end(), [&] (int x, int y) {return dfn[x] < dfn[y];});
		V.erase(std::unique(V.begin(), V.end()), V.end());
	}

	void add_edge(int u, int v) {
		nxt[++tot] = head[u], head[u] = tot, to[tot] = v;
	}

	void build(std::vector <int> &_V) {
		V = _V; init(); st[++top] = V[0];
		for (int i = 1; i < V.size(); i++) {
			int lca = LCA(st[top], V[i]); vis.pb(lca);
			while (top > 1 && dep[st[top - 1]] >= dep[lca])
				add_edge(st[top - 1], st[top]), top--;
			if (dep[st[top]] > dep[lca]) add_edge(lca, st[top]), top--;
			if (st[top] != lca) st[++top] = lca;
			st[++top] = V[i];
		}
		while (top > 1) add_edge(st[top - 1], st[top]), top--;
		rt = st[top];
	}
}

稳定婚姻(Gale-Shapley 算法)

namespace stable_match {
	const int max_N = ?, INF = 2e9;

	int n, valx[max_N][max_N], valy[max_N][max_N], linkx[max_N], linky[max_N];
	int order[max_N][max_N], pos[max_N];

	void init(int _n) {
		n = _n;
		for (int i = 1; i <= n; i++)
			std::fill(valx[i] + 1, valx[i] + n + 1, -INF),
			std::fill(valy[i] + 1, valy[i] + n + 1, -INF);
		std::fill(linkx + 1, linkx + n + 1, 0);
		std::fill(linky + 1, linky + n + 1, 0);
	}

	void set(int x, int y, int v1, int v2) {
		valx[x][y] = v1, valy[y][x] = v2;
	}

	void link(int x, int y) {linky[x] = y, linkx[y] = x;}

	void solve() {
		std::fill(pos + 1, pos + n + 1, 1);
		for (int i = 1; i <= n; i++)
			std::iota(order[i] + 1, order[i] + n + 1, 1),
			std::sort(order[i] + 1, order[i] + n + 1, [&] (int x, int y) {return valx[i][x] > valx[i][y];});

		while (std::find(linky + 1, linky + n + 1, 0) <= linky + n)
			for (int i = 1; i <= n; i++) if (!linky[i])
				while (true) {
					int y = order[i][pos[i]], x = linkx[y]; pos[i]++;
					if (!x || valy[y][x] < valy[y][i]) {linky[x] = 0; link(i, y); break;}
				}
	}
}

二分图最大匹配

namespace bipartite_graph_matching {
	const int max_N = ?;

	int nl, nr, levell[max_N], levelr[max_N], linkl[max_N], linkr[max_N];
	std::vector <int> G[max_N];
	bool vis[max_N];

	void init(int _nl, int _nr) {
		nl = _nl, nr = _nr;
		for (int i = 1; i <= nl; i++) G[i].clear();
		std::fill(linkl + 1, linkl + nl + 1, 0);
		std::fill(linkr + 1, linkr + nr + 1, 0);
	}

	void link(int x, int y) {linkr[x] = y, linkl[y] = x;}

	void add_edge(int x, int y) {G[x].pb(y);}

	bool bfs() {
		std::queue <int> Q; bool res = false;
		std::fill(levell + 1, levell + nl + 1, 0);
		std::fill(levelr + 1, levelr + nr + 1, 0);
		for (int i = 1; i <= nl; i++)
			if (!linkr[i]) Q.push(i), levell[i] = 1;
		while (!Q.empty()) {
			int cur = Q.front(); Q.pop();
			for (int i : G[cur])
				if (levelr[i] == 0) {
					levelr[i] = levell[cur] + 1;
					if (linkl[i] && levell[linkl[i]] == 0)
						levell[linkl[i]] = levelr[i] + 1, Q.push(linkl[i]);
					else res = true;
				}
		}
		return res;
	}

	bool dfs(int x) {
		for (int i : G[x])
			if (levelr[i] == levell[x] + 1 && !vis[i])
				if (vis[i] = true, !linkl[i] || dfs(linkl[i])) return link(x, i), true;
		return false;
	}

	int solve() {
		int ans = 0;
		while (bfs()) {
			std::fill(vis + 1, vis + nr + 1, false);
			for (int i = 1; i <= nl; i++)
				if (!linkr[i] && dfs(i)) ans++;
		}
		return ans;
	}
}

一般图最大匹配

namespace general_graph_matching {
	const int max_N = ?;

	int n, vis[max_N], col[max_N], match[max_N], pre[max_N];
	std::vector <int> G[max_N];
	std::queue <int> Q;

	namespace DSU {
		int fa[max_N];
		void init() {std::iota(fa + 1, fa + n + 1, 1);}
		int anc(int x) {return fa[x] == x ? x : fa[x] = anc(fa[x]);}
		bool connected(int x, int y) {return anc(x) == anc(y);}
	}

	void init(int _n) {
		n = _n;
		std::fill(match + 1, match + n + 1, 0);
		for (int i = 1; i <= n; i++) G[i].clear();
	}

	void add_edge(int u, int v) {G[u].pb(v), G[v].pb(u);}

	int LCA(int x, int y) {
		++*vis; x = DSU::anc(x), y = DSU::anc(y);
		while (x) vis[x] = *vis, x = DSU::anc(pre[match[x]]);
		while (vis[y] != *vis) y = DSU::anc(pre[match[y]]);
		return y;
	}

	void contract(int x, int y, int w) {
		while (DSU::anc(x) != w) {
			pre[x] = y, y = match[x];
			if (col[y] == 1) col[y] = 0, Q.push(y);
			if (DSU::fa[x] == x) DSU::fa[x] = w;
			if (DSU::fa[y] == y) DSU::fa[y] = w;
			x = pre[y];
		}
	}

	void augment(int x) {
		while (x) match[x] = pre[x], std::swap(x, match[match[x]]);
	}

	bool find_augmenting_path(int s) {
		std::fill(vis, vis + n + 1, 0); 
		std::fill(col + 1, col + n + 1, -1);
		DSU::init(); Q.push(s); col[s] = 0;

		while (!Q.empty()) {
			int cur = Q.front(), rt; Q.pop();
			for (int i : G[cur]) {
				if (DSU::connected(cur, i) || col[i] == 1) continue;
				if (col[i] == 0) rt = LCA(cur, i), contract(i, cur, rt), contract(cur, i, rt);
				else {
					col[i] = 1, pre[i] = cur;
					if (!match[i]) {
						while (!Q.empty()) Q.pop();
						return augment(i), true;
					}
					else col[match[i]] = 0, Q.push(match[i]);
				}
			}
		}

		return false;
	}

	int solve() {
		int ans = 0;
		for (int i = 1; i <= n; i++)
			if (!match[i] && find_augmenting_path(i)) ans++;
		return ans;
	}
}

数论

数论基本操作

int gcd(int x, int y) {return y ? gcd(y, x % y) : x;}
void exgcd(int a, int b, int &x, int &y, int &d) {
	if (!b) x = 1, y = 0, d = a;
	else exgcd(b, a % b, y, x, d), y -= a / b * x;
}
int inv(int a, int m) {
	int b = m, x, y, d; exgcd(a, b, x, y, d);
	return x %= m, x < 0 ? x + m : x;
}

原根

int get_root() {
	std::vector <int> vec; int tmp = phi;
	for (int i = 2; i * i <= p; i++) {
		if (tmp % i) continue; tmp /= i, vec.pb(i);
		while (tmp % i == 0) tmp /= i;
	}
	if (tmp != 1) vec.pb(tmp);
	for (int i = 1; i < p; i++) {
		bool ok = true;
		for (int j : vec)
			if (power(i, phi / j) == 1) {ok = false; break;}
		if (ok) return i;
	}
	return -1;
}

离散对数

namespace BSGS {
	std::unordered_map <int, int> Map;
	int g, p, H, p1, p2;

	void init(int _g, int _p, int _H) {
		g = _g, p = _p, H = _H; Map.clear(); p1 = p2 = 1;
		for (int i = 1; i <= H; i++, p1 = p1 * g % p);
		for (int i = 0; i <= p; i += H, p2 = p2 * p1 % p) Map.ep(p2, i);
	}

	int solve(int x) {
		for (int i = 0; i <= H; i++, x = x * g % p) {
			auto it = Map.find(x);
			if (it != Map.end()) {
				int ans = it -> se - i;
				return ans < 0 ? ans + p - 1 : ans;
			}
		}
		return -1;
	}
}

欧拉筛

void sieve(int n) {
	not_prime[1] = true;
	for (int i = 2; i <= n; i++) {
		if (!not_prime[i]) prime[++*prime] = i;
		for (int j = 1; j <= *prime && i * prime[j] <= n; j++) {
			not_prime[i * prime[j]] = true;
			if (i % prime[j] == 0)  break;
		}
	}
}

万能欧几里得算法

data data_power(data x, ll y, data ans = data()) {
	for (; y; y >>= 1, x *= x) if (y & 1) ans *= x;
	return ans;
}

data solve(int p, int q, int r, int l, data U, data R) {
	if (l == 0) return data();
	if (p >= q) return solve(p % q, q, r, l, U, data_power(U, p / q) * R);
	int h = (l * p + r) / q; if (h == 0) return data_power(R, l);
	return data_power(R, (q - r - 1) / p) * U * solve(q, p, (q - r - 1) % p, h - 1, R, U) * data_power(R, l - (h * q - r - 1) / p);
}

多项式

多项式基本操作

typedef std::vector <int> poly;

namespace poly_base {
	const int g = ?, max_L = ?, max_len = 1 << max_L;
	u32 W[max_len + 7], rev[max_len + 7];
}

void prepare() {
	using namespace poly_base;
	for (int i = 1; i < max_len; i++)
		rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << max_L - 1);
	ll wn = power(g, (mod - 1) / max_len);
	for (int i = max_len / 2, p = 1; i < max_len; i++, p = p * wn % mod) W[i] = p;
	for (int i = max_len / 2 - 1; i; i--) W[i] = W[i << 1];
}

void up_power2(poly &A) {
	int l = 1; while (l < A.size()) l *= 2; A.resize(l);
}

void NTT(poly &A, int L, bool flag) {
	using namespace poly_base; static ull F[max_len + 7], tmp;
	for (u32 i = 0, o = max_L - L; i < A.size(); i++) F[rev[i] >> o] = A[i];
	for (u32 l = 1; l < A.size(); l <<= 1) {
		for (u32 i = 0; i < A.size(); i += 2 * l) {
			ull *p1 = F + i, *p2 = p1 + l; u32 *p3 = W + l;
			for (u32 j = 0; j < l; j++)
				tmp = *p2 * *p3 % mod, *p2 = *p1 + mod - tmp, *p1 += tmp, p1++, p2++, p3++;
		}
		if (l == 32768) for (u32 i = 0; i < A.size(); i++) F[i] %= mod;
	}
	if (flag) {
		A[0] = F[0] * (tmp = inv(A.size())) % mod;
		for (u32 i = 1; i < A.size(); i++) A[i] = F[A.size() - i] * tmp % mod;
	}
	else for (u32 i = 0; i < A.size(); i++) A[i] = F[i] % mod;
}

poly &operator += (poly &A, poly B) {
	if (A.size() < B.size()) A.resize(B.size());
	for (int i = 0; i < B.size(); i++) _plus(A[i], B[i]);
	return A;
}
poly operator + (poly A, poly B) {return A += B;}

poly &operator -= (poly &A, poly B) {
	if (A.size() < B.size()) A.resize(B.size());
	for (int i = 0; i < B.size(); i++) _minus(A[i], B[i]);
	return A;
}
poly operator - (poly A, poly B) {return A -= B;}

poly &operator <<= (poly &A, int B) {
	A.resize(A.size() + B);
	for (int i = A.size() - 1; i >= B; i--) A[i] = A[i - B];
	return std::fill(A.begin(), A.begin() + B, 0), A;
}
poly operator << (poly A, int B) {return A <<= B;}

poly &operator >>= (poly &A, int B) {
	for (int i = B; i < A.size(); i++) A[i - B] = A[i];
	return A.resize(A.size() - B), A;
}
poly operator >> (poly A, int B) {return A >>= B;}

多项式求导/积分

poly poly_derivative(poly A) {
	for (int i = 1; i < A.size(); i++) A[i - 1] = (ll)A[i] * i % mod;
	return A.pop_back(), A;
}

poly poly_integral(poly A) {
	A.pb(0);
	for (int i = A.size() - 1; i; i--) A[i] = A[i - 1] * inv(i) % mod;
	return A[0] = 0, A;
}

\(O\left(n\log n\right)\) 多项式乘法

poly &operator *= (poly &A, poly B) {
	int deg = A.size() + B.size() - 1, L = 0;
	while ((1 << L) < deg) L++;
	A.resize(1 << L), B.resize(1 << L);
	NTT(A, L, false), NTT(B, L, false);
	for (int i = 0; i < A.size(); i++) A[i] = (ll)A[i] * B[i] % mod;
	return NTT(A, L, true), A.resize(deg), A;
}
poly operator * (poly A, poly B) {return A *= B;}

\(O\left(n^2\right)\) 多项式乘法

poly &operator *= (poly &A, poly B) {
	static ull C[?];
	int deg = A.size() + B.size() - 1;
	std::fill(C, C + deg, 0);
	for (int i = 0; i < A.size(); i++) {
		for (int j = 0; j < B.size(); j++)
			C[i + j] += (ull)A[i] * B[j];
		if (!(i & 15))
			for (int j = 0; j < deg; j++) C[j] %= mod;
	}
	A.resize(deg);
	for (int i = 0; i < deg; i++) A[i] = C[i] % mod;
	return A;
}
poly operator * (poly A, poly B) {return A.size() < B.size() ? A *= B : B *= A;}

\(O\left(n\log n\right)\) 多项式求逆

poly poly_inv(poly A) {
	int deg = A.size(); up_power2(A);
	poly B = {(int)inv(A[0])};
	for (int l = 1, logl = 0; l < A.size(); l *= 2, logl++) {
		poly A0 = {A.begin(), A.begin() + 2 * l}, B0 = B;
		B.resize(4 * l), A0.resize(4 * l), B0.resize(4 * l);
		NTT(A0, logl + 2, false), NTT(B0, logl + 2, false);
		for (int i = 0; i < 4 * l; i++) B[i] = mul(B0[i], fms(2, A0[i], B0[i]));
		NTT(B, logl + 2, true); B.resize(2 * l);
	}
	return B.resize(deg), B;
}

\(O\left(n^2\right)\) 多项式取模

poly operator %= (poly &A, poly B) {
	while (A.size() >= B.size()) {
		int tmp = (mod - A.back()) * inv(B.back()) % mod;
		for (int i = 0; i < B.size(); i++)
			_fma(A[A.size() - B.size() + i], tmp, B[i]);
		A.pop_back();
	}
	return A;
}
poly operator % (poly A, poly B) {return A %= B;}

\(O\left(n\log n\right)\) 多项式 \(\ln\)

poly poly_ln(poly A) {
	poly B = poly_derivative(A) * poly_inv(A);
	return B.resize(A.size() - 1), poly_integral(B);
}

\(O\left(n^2\right)\) 多项式 \(\ln\)

poly poly_ln(poly A) {
	poly B(A.size()); static ull tmp;
	for (int i = 0; i + 1 < A.size(); i++) {
		tmp = (ull)(mod - A[i + 1]) * (i + 1);
		for (int j = 1; j <= i; j++) {
			tmp += (ull)A[j] * B[i - j + 1];
			if (!(j & 15)) tmp %= mod;
		}
		B[i + 1] = mod - tmp % mod;
	}
	for (int i = 1; i < A.size(); i++) B[i] = B[i] * inv(i) % mod;
	return B;
}

\(O\left(n\log n\right)\) 多项式 \(\exp\)

poly poly_exp(poly A) {
	int deg = A.size(); up_power2(A);
	poly B = {1};
	for (int l = 1; l < A.size(); l *= 2) {
		B.resize(2 * l); poly C = poly_ln(B);
		for (int i = 0; i < B.size(); i++) C[i] = minus(A[i], C[i]);
		_plus(C[0], 1); B *= C; B.resize(2 * l);
	}
	return B.resize(deg), B;
}

\(O\left(n^2\right)\) 多项式 \(\exp\)

poly poly_exp(poly A) {
	poly B(A.size()); B[0] = 1; static ull tmp;
	for (int i = 1; i < A.size(); i++) A[i] = (ll)A[i] * i % mod;
	for (int i = 0; i + 1 < A.size(); i++) {
		tmp = 0;
		for (int j = 0; j <= i; j++) {
			tmp += (ull)B[j] * A[i - j + 1];
			if (!(j & 15)) tmp %= mod;
		}
		B[i + 1] = tmp % mod * inv(i + 1) % mod;
	}
	return B;
}

线性代数

矩阵基本操作

typedef std::vector <std::vector <int> > matrix;

namespace matrix_base {
	int size;
	matrix O, I;
}

void init_matrix(int n) {
	using namespace matrix_base;
	size = n; O.clear(), I.clear();
	O.resize(n), I.resize(n);
	for (int i = 0; i < n; i++)
		O[i].resize(n), I[i].resize(n), I[i][i] = 1;
}

matrix operator * (matrix A, matrix B) {
	matrix C = matrix_base::O;
	for (int i = 0; i < matrix_base::size; i++)
		for (int k = 0; k < matrix_base::size; k++)
			for (int j = 0; j < matrix_base::size; j++)
				_fma(C[i][j], A[i][k], B[k][j]);
	return C;
}

matrix matrix_power(matrix x, int y, matrix ans = matrix_base::I) {
	for (; y; y >>= 1, x = x * x)
		if (y & 1) ans = ans * x;
	return ans;
}

拟阵交

namespace matriod_cross {
	const int max_N = ?, INF = 2e9;
	bool flag[max_N];
	std::vector <int> G[max_N];
	int n, pre[max_N], dist[max_N];

	namespace matriod_1 {
		void build() {?}
		bool ins(int x) {?}
	}

	namespace matriod_2 {
		void build() {?}
		bool ins(int x) {?}
	}

	bool find_augmenting_path() {
		for (int i = 1; i <= n + 2; i++) G[i].clear();
		matriod_1::build(), matriod_2::build();
		for (int i = 1; i <= n; i++) {
			if (flag[i]) continue; bool tmp = true;
			if (matriod_1::ins(i)) G[n + 1].pb(i); else tmp = false;
			if (matriod_2::ins(i)) G[i].pb(n + 2); else tmp = false;
			if (tmp) return flag[i] = true;
		}
		for (int i = 1; i <= n; i++) {
			if (!flag[i]) continue; flag[i] = false;
			matriod_1::build(), matriod_2::build();
			for (int j = 1; j <= n; j++) {
				if (i == j || flag[j]) continue;
				if (matriod_1::ins(j)) G[i].pb(j);
				if (matriod_2::ins(j)) G[j].pb(i);
			}
			flag[i] = true;
		}
		std::fill(dist + 1, dist + n + 3, INF);
		std::queue <int> Q; Q.push(n + 1); dist[n + 1] = 0;
		while (!Q.empty()) {
			int cur = Q.front(); Q.pop();
			for (int i : G[cur]) if (dist[i] == INF)
				dist[i] = dist[cur] + 1, pre[i] = cur, Q.push(i);
		}
		if (dist[n + 2] == INF) return false;
		for (int i = pre[n + 2]; i != n + 1; i = pre[i]) flag[i] = !flag[i];
		return true;
	}

	int solve(int _n) {
		n = _n; while (find_augmenting_path());
		return std::accumulate(flag + 1, flag + n + 1, 0);
	}
}

带删除线性基

namespace basis {
	const int max_N = ?;

	bitset A[max_N], from[max_N];
	int id[max_N];

	bool insert(int x) {
		if (A[x].none()) return false;
		from[x].reset(), from[x].set(x);
		for (int i = 0; i < m; i++) {
			if (!A[x].test(i)) continue;
			if (id[i]) A[x] ^= A[id[i]], from[x] ^= from[id[i]];
			else return id[i] = x, true;
		}
		return false;
	}

	void erase(int x) {
		if (from[x].none()) return;
		if (A[x].none()) {from[x].reset(); return;}
		int pos = std::find(id, id + m, x) - id, g = 0;
		for (int i = 1; i <= n; i++)
			if (A[i].none() && from[i].test(x)) {g = i; break;}
		if (g) {
			for (int i = 1; i <= n; i++)
				if (i != g && from[i].test(x)) from[i] ^= from[g];
			from[g] = from[x], A[g] = A[x], from[x].reset(), A[x].reset(), id[pos] = g;
		}
		else {
			for (int i = m - 1; i >= 0; i--)
				if (from[id[i]].test(x)) {g = id[i], id[i] = 0; break;}
			for (int i = 0; i < m; i++)
				if (id[i] != g && from[id[i]].test(x)) from[id[i]] ^= from[g], A[id[i]] ^= A[g];
			if (g == x) from[x].reset(), A[x].reset();
			else from[g] = from[x], A[g] = A[x], from[x].reset(), A[x].reset(), id[pos] = g;
		}
	}
}

二维计算几何

二维计算几何基本操作

struct vec2 {
	ld x, y;
	vec2 (ld _x = 0, ld _y = 0) : x(_x), y(_y) {}
	vec2 &read() {scanf("%Lf%Lf", &x, &y); return *this;}
	vec2 operator - () const {return vec2(-x, -y);}
	vec2 operator + (const vec2 &b) const {return vec2(x + b.x, y + b.y);}
	vec2 operator - (const vec2 &b) const {return vec2(x - b.x, y - b.y);}
	vec2 operator * (const ld &b) const {return vec2(x * b, y * b);}
	vec2 operator / (const ld &b) const {return *this * (1.0 / b);}
	ld operator * (const vec2 &b) const {return x * b.x + y * b.y;}
	ld operator ^ (const vec2 &b) const {return x * b.y - y * b.x;}
	ld norm2() {return sqr(x) + sqr(y);}
	ld norm() {return sqrtl(sqr(x) + sqr(y));}
	bool operator < (const vec2 &b) const {
		return lt(x, b.x) ? true : (gt(x, b.x) ? false : lt(y, b.y));
	}
	bool operator == (const vec2 &b) const {
		return eq(x, b.x) && eq(y, b.y);
	}
	bool operator << (const vec2 &b) const {
		if (lt(y, 0) != lt(b.y, 0)) return lt(y, 0);
		if (!eq(*this ^ b, 0)) return gt(*this ^ b, 0);
		if (gt(x, 0) != gt(b.x, 0)) return gt(x, 0);
		return fabs(x) + fabs(y) < fabs(b.x) + fabs(b.y);
	}
	ld arg() {return atan2l(y, x);}
	vec2 trans(ld A, ld B, ld C, ld D) {return vec2(A * x + B * y, C * x + D * y);}
	void output() {printf("%.15Lf %.15Lf\n", x, y);}
};

struct line {
	ld A, B, C;
	line (ld _A = 0, ld _B = 0, ld _C = 0) : A(_A), B(_B), C(_C) {}
	line (vec2 u, vec2 v) : A(u.y - v.y), B(v.x - u.x), C(u ^ v) {}
	vec2 norm_vec() {return vec2(A, B);}
	ld norm2() {return sqr(A) + sqr(B);}
	ld norm() {return sqrtl(sqr(A) + sqr(B));}
	ld operator () (const vec2 &b) const {return A * b.x + B * b.y + C;}
};

ld dot(vec2 x, vec2 u, vec2 v) {return (u - x) * (v - x);}
ld cross(vec2 x, vec2 u, vec2 v) {return (u - x) ^ (v - x);}
ld angle(vec2 A, vec2 B) {return atan2l(A ^ B, A * B);}
int collinear(vec2 A, vec2 B, vec2 C) {
	return eq(cross(C, A, B), 0) ? le(dot(C, A, B), 0) + 1 : 0;
}
vec2 intersection(line u, line v) {
	return vec2(u.B * v.C - u.C * v.B, u.C * v.A - u.A * v.C) / (u.A * v.B - u.B * v.A);
}
bool parallel(line u, line v) {return eq(u.norm_vec() ^ v.norm_vec(), 0);}
bool perpendicular(line u, line v) {return eq(u.norm_vec() * v.norm_vec(), 0);}
bool same_dir(line u, line v) {return parallel(u, v) && gt(u.norm_vec() * v.norm_vec(), 0);}
line bisector(vec2 u, vec2 v) {return line(v.x - u.x, v.y - u.y, 0.5 * (u.norm2() - v.norm2()));}
ld dist(vec2 u, vec2 v) {return (u - v).norm();}
ld dist2(vec2 u, vec2 v) {return (u - v).norm2();}
ld dist(vec2 u, line v) {return v(u) / v.norm();}
ld dist2(vec2 u, line v) {return sqr(v(u)) / v.norm2();}
vec2 projection(vec2 u, line v) {return u - v.norm_vec() * (v(u) / v.norm2());}
vec2 symmetry(vec2 u, line v) {return u - v.norm_vec() * (2 * v(u) / v.norm2());}

圆和直线交点

std::vector <vec2> intersection(vec2 O, ld r2, line l) {
	ld d = dist2(O, l);
	if (gt(d, r2)) return std::vector <vec2> {};
	if (eq(d, r2)) return std::vector <vec2> {projection(O, l)};
	if (eq(d, 0)) {
		vec2 dir = l.norm_vec() * sqrtl(r2 / l.norm2());
		return std::vector <vec2> {O + dir.trans(0, -1, 1, 0), O + dir.trans(0, 1, -1, 0)};
	}
	else {
		ld T = copysign(sqrtl(r2 / d - 1), l(O));
		vec2 dir = -l.norm_vec() * (l(O) / l.norm2());
		return std::vector <vec2> {O + dir.trans(1, T, -T, 1), O + dir.trans(1, -T, T, 1)};
	}
}

圆和一顶点在圆心的三角形的面积交

ld inter_area(ld r2, vec2 A, vec2 B) {
	if (eq(A ^ B, 0)) return 0;
	std::vector <vec2> vec = intersection(vec2(), r2, line(A, B));
	if (vec.empty()) return 0.5 * r2 * angle(A, B);
	if (vec.size() == 1) vec.pb(vec[0]);
	switch (2 * gt(A.norm2(), r2) + gt(B.norm2(), r2)) {
		case 0 : return 0.5 * (A ^ B);
		case 1 : return 0.5 * ((A ^ vec[1]) + r2 * angle(vec[1], B));
		case 2 : return 0.5 * ((vec[0] ^ B) + r2 * angle(A, vec[0]));
		case 3 : {
			if (lt((A - vec[0]) * (B - vec[0]), 0))
				return 0.5 * (r2 * (angle(A, vec[0]) + angle(vec[1], B)) + (vec[0] ^ vec[1]));
			else return 0.5 * r2 * angle(A, B);
		}
	}
}

圆和多边形的面积交

ld inter_area(vec2 O, ld r2, std::vector <vec2> poly) {
	ld ans = inter_area(r2, poly.back() - O, poly.front() - O);
	for (int i = 1; i < poly.size(); i++)
		ans += inter_area(r2, poly[i - 1] - O, poly[i] - O);
	return ans;
}

二维凸包

std::vector <vec2> CH2D(std::vector <vec2> poly) {
	if (poly.size() <= 2) return poly;
	std::sort(poly.begin(), poly.end());
	std::vector <vec2> ans1, ans2;
	ans1.reserve(poly.size()), ans2.reserve(poly.size());
	for (vec2 i : poly) {
		while (ans1.size() > 1 && ge((ans1.back() - ans1[ans1.size() - 2]) ^ (i - ans1.back()), 0)) ans1.pop_back();
		while (ans2.size() > 1 && le((ans2.back() - ans2[ans2.size() - 2]) ^ (i - ans2.back()), 0)) ans2.pop_back();
		ans1.pb(i), ans2.pb(i);
	}
	std::reverse_copy(++ans1.begin(), --ans1.end(), std::back_inserter(ans2));
	return ans2;
}

多边形面积

ld area(std::vector <vec2> poly) {
	ld ans = poly.back() ^ poly.front();
	for (int i = 1; i < poly.size(); i++) ans += poly[i - 1] ^ poly[i];
	return 0.5 * ans;
}

凸包和半平面的面积交

ld inter_area(std::vector <vec2> poly, line l) {
	std::vector <vec2> vec; vec.reserve(poly.size());
	for (int i = 0, j = poly.size() - 1; i < poly.size(); j = i++) {
		if (ge(l(poly[j]), 0)) vec.pb(poly[j]);
		if (lt(l(poly[i]) * l(poly[j]), 0))
			vec.pb(intersection(line(poly[i], poly[j]), l));
	}
	return vec.empty() ? 0 : area(vec);
}

三角形外接圆

vec2 circum_center(vec2 A, vec2 B, vec2 C) {
	vec2 a = B - A, b = C - A; ld na = a.norm2(), nb = b.norm2();
	return A + vec2(na * b.y - nb * a.y, nb * a.x - na * b.x) * (0.5 / (a ^ b));
}
ld circum_radius2(vec2 A, vec2 B, vec2 C) {
	vec2 a = B - A, b = C - A;
	return (a.norm2() * b.norm2() * (a - b).norm2()) / sqr(2 * (a ^ b));
}

三维计算几何

三维计算几何基本操作

struct vec3 {
	ld x, y, z;
	vec3 (ld _x = 0, ld _y = 0, ld _z = 0) : x(_x), y(_y), z(_z) {}
	vec3 &read() {scanf("%Lf%Lf%Lf", &x, &y, &z); return *this;}
	vec3 operator - () const {return vec3(-x, -y, -z);}
	vec3 operator + (const vec3 &b) const {return vec3(x + b.x, y + b.y, z + b.z);}
	vec3 operator - (const vec3 &b) const {return vec3(x - b.x, y - b.y, z - b.z);}
	vec3 operator * (const ld &b) const {return vec3(x * b, y * b, z * b);}
	vec3 operator / (const ld &b) const {return *this * (1.0 / b);}
	ld operator * (const vec3 &b) const {return x * b.x + y * b.y + z * b.z;}
	vec3 operator ^ (const vec3 &b) const {return vec3(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x);}
	ld norm2() {return sqr(x) + sqr(y) + sqr(z);}
	ld norm() {return sqrtl(sqr(x) + sqr(y) + sqr(z));}
	bool operator < (const vec3 &b) const {
		if (lt(x, b.x)) return true; if (lt(b.x, x)) return false;
		if (lt(y, b.y)) return true; if (lt(b.y, y)) return false;
		return lt(z, b.z);
	}
	bool operator == (const vec3 &b) const {
		return eq(x, b.x) && eq(y, b.y) && eq(z, b.z);
	}
};

ld triple(vec3 A, vec3 B, vec3 C) {return A * (B ^ C);}
ld volume(vec3 A, vec3 B, vec3 C, vec3 D) {return triple(B - A, C - A, D - A);}

\(O\left(n^2\right)\) 三维凸包

namespace CH3D {
	const int max_N = ?;
	int n, cntF, cntG;
	vec3 P[max_N], tmp[max_N];
	bool vis[max_N][max_N];

	struct triangle {
		int v[3];
		triangle (int v0 = 0, int v1 = 0, int v2 = 0) {
			v[0] = v0, v[1] = v1, v[2] = v2;
		}
		vec3 norm_vec() {return (P[v[1]] - P[v[0]]) ^ (P[v[2]] - P[v[0]]);}
		ld area() {return 0.5 * norm_vec().norm();}
	}F[2 * max_N], G[2 * max_N];

	vec3 rand_vec3() {
		return vec3((ld)rand() / RAND_MAX, (ld)rand() / RAND_MAX, (ld)rand() / RAND_MAX);
	}
	bool see(triangle A, vec3 B) {return ge(((B - P[A.v[0]]) * A.norm_vec()), 0);}

	void solve() {
		F[1] = triangle(1, 2, 3), F[2] = triangle(3, 2, 1), cntF = 2;
		for (int i = 1; i <= n; i++) tmp[i] = P[i], P[i] = P[i] + rand_vec3() * 1e-8;
		for (int i = 4; i <= n; i++) {
			cntG = 0;
			for (int j = 1, tmp; j <= cntF; j++) {
				if (!(tmp = see(F[j], P[i]))) G[++cntG] = F[j];
				for (int k = 0; k < 3; k++)
					vis[F[j].v[k]][F[j].v[(k + 1) % 3]] = tmp;
			}
			for (int j = 1; j <= cntF; j++) for (int k = 0; k < 3; k++)
				if (vis[F[j].v[k]][F[j].v[(k + 1) % 3]] && !vis[F[j].v[(k + 1) % 3]][F[j].v[k]])
					G[++cntG] = triangle(F[j].v[k], F[j].v[(k + 1) % 3], i);
			cntF = cntG; std::copy(G + 1, G + cntG + 1, F + 1);
		}
		std::copy(tmp + 1, tmp + n + 1, P + 1);
	}
}

回到顶部

posted @ 2021-01-08 22:14  Binary_Search_Tree  阅读(583)  评论(2编辑  收藏  举报