51nod1675 序列变换
题意:
给定长为n的序列a,b,下标从1开始,问有多少对x,y满足gcd(x,y)=1且$a_{b_x}=b_{a_y}$?
$n\leq 10^5.$
题解:
$a_{b_x}$和$b_{a_y}$是个幌子,定义成$A_x$和$B_y$就好了,没有什么影响。
考虑倍数反演:记f(i)表示i=gcd(x,y)的方案数;g(i)表示i|gcd(x,y)的方案数。g(i)可以枚举倍数得到。那么有:
$$\begin{equation}g(n)=\sum_{n|d}f(d)\Longrightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{equation}$$
这里只需要$f(1)=\sum_{i=1}^{n}\mu(i)\times g(i)$。
复杂度$\mathcal{O}(n\log n)$。
code:
1 #include<bits/stdc++.h> 2 #define rep(i,x,y) for (int i=(x);i<=(y);i++) 3 #define ll long long 4 #define inf 1000000001 5 #define y1 y1___ 6 using namespace std; 7 char gc(){ 8 static char buf[100000],*p1=buf,*p2=buf; 9 return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++; 10 } 11 #define gc getchar 12 ll read(){ 13 char ch=gc();ll x=0;int op=1; 14 for (;!isdigit(ch);ch=gc()) if (ch=='-') op=-1; 15 for (;isdigit(ch);ch=gc()) x=(x<<1)+(x<<3)+ch-'0'; 16 return x*op; 17 } 18 #define N 100005 19 int n,a[N],b[N],t[N],mu[N],p[N],cnt;ll ans,g[N];bool vis[N]; 20 void init(int n){ 21 mu[1]=1; 22 rep (i,2,n){ 23 if (!vis[i]) p[++cnt]=i,mu[i]=-1; 24 for (int j=1;j<=cnt&&i*p[j]<=n;j++){ 25 vis[i*p[j]]=1; 26 if (i%p[j]==0) break; 27 mu[i*p[j]]=-mu[i]; 28 } 29 } 30 } 31 int main(){ 32 n=read();init(n); 33 rep (i,1,n) a[i]=read(); 34 rep (i,1,n) b[i]=read(); 35 rep (d,1,n){ 36 for (int i=d;i<=n;i+=d) t[b[a[i]]]++; 37 for (int i=d;i<=n;i+=d) g[d]+=t[a[b[i]]]; 38 for (int i=d;i<=n;i+=d) t[b[a[i]]]--; 39 } 40 rep (i,1,n) ans+=mu[i]*g[i]; 41 printf("%lld\n",ans); 42 return 0; 43 }