建立信号基站

建立信号基站

  要建立一个信号基站服务n个村庄,这n个村庄用平面上的n个点表示。假设基站建立的位置在(X,Y),则它对某个村庄(x,y)的距离为max{|X – x|, |Y – y|}, 其中| |表示绝对值,我们的目标是让所有村庄到信号基站的距离和最小。 基站可以建立在任何实数坐标位置上,也可以与某村庄重合。

输入: 给定每个村庄的位置x[],y[],x,y都是整数,满足:            -1000000000 < x,y < 1000000000 村庄个数大于1,小于101。

输出: 所有村庄到信号基站的距离和的最小值。 关于精度: 因为输出是double。我们这样判断对错,如果标准答案是A,你的答案是a,如果|A – a| < 1e-3 我们认为是正确的,否则认为是错误的。 样例: 假设有4个村庄位置分别为 (1,4) (2,3) (0,1) (1,1) 我们的结果是5。因为我们可以选择(1.5,2.5)来建立信号基站。 bestDistance = max(|1.5-1|, |2.5-4|) + max(|1.5-2|,|2.5-3|) + max(|1.5-0|,|2.5-1|) + max(|1.5-1|,|2.5-1|) = max(0.5, 1.5) + max(0.5,0.5) + max(1.5,1.5) + max(0.5,1.5) = 1.5 + 0.5 + 1.5 + 1.5 = 5

函数头部: C/C++ double bestDistance(int n, cons int *x, const int *y); Java class Main() {     public static double bestDistance(int [] x,int [] y); } 

解题思路:

  解题的关键在于如何处理max{|X – x|, |Y – y|},可以通过分段函数讨论来证明,max{|x1-x2|,|y1-y2|},等价于(|x1+y1-x2-y2|+|x1-y1-(x2-y2)|)/2;

  假设信号基站的坐标是(X , Y),那么他与其他坐标的距离为max{|X – x1|, |Y – y1|} = (|X+Y-x1-y1|+|X-Y-(x1-y1)|)/2, ……,(|X+Y-xn-yn|+|X-Y-(xn-yn)|)/2;也就是最短距离

  bestDistance = 1/2  * (|X+Y-(x1+y1)| + |X-Y-(x1-y1)| + |X+Y-(x2+y2)| + |X-Y-(x2-y2)| +……+ |X+Y-(xn+yn)|+|X-Y-( xn-yn)|) -- (1-1)

  其中,x1+y1 、x1-y1  、 x2+y2 、 x2-y2 、……、xn+yn  、 xn-yn 均为常数, 通过题目所给的数组可以容易得到这些值

  假设 U(X, Y) = X + Y ,       V(X, Y) = X - Y ;可以得到

  bestDistance =  1/2  *(|U - U1| + |V - V1| + |U - U2| + |V - V2| + ……+ |U - Un| + |V - Vn|)    -- (1 - 2)

     = 1/2  *【(|U - U1| + |U - U2| + ……+ |U - Un|) + (|V - V1|  + |V - V2| + ……+ |U - Un| + |V - Vn|) 】

  这样,就转换为求函数 y = |x - x1| +  |x - x2| +  |x - x3| + ……+ |x - xn|的最小值的问题,也许有人会问,公式(1 - 2)有两个变量U , V,而函数y只有一个变量x,其实很好办,就将公式(1 - 2)按照变量 和 V分为两部分,分别求最小值,和起来也肯定是最小值;

  对于函数 y = |x - x1| +  |x - x2| +  |x - x3| + ……+ |x - xn| (x1 , x2, ……xn是从小到大排列)的最小值;可以用数学归纳法求解:

  证明:假设n = 2,则 y = |x - x1| +  |x - x2|,假设 x< x,当x ≤x< x时,y = x1 + x2 - 2x , ymin = x2- x1; 当 x1< x < x2时,

y  = x2 - x1 ,则ymin = x2 - x1 ; 当 x ≥ x2 时,y = 2x - x1 - x2, ymin = x2 - x1;

  若 n > 2 ,

  当x < x1 < x2 <……< xn 时,y = (x1 - x) + (x2 - x) +…… +(xn - x) = (x1 + x2 + x3 +……+ xn) - n * x;

  当x1 < x < x2 <……< xn 时,y =  (x1 + x2 + x3 + …… + xn) - n * x + 2(x - x1);

  当x1 < x2 < x <……< xn 时,y =  (x1 + x2 + x3 + …… + xn) - n * x + 2[(x - x1) + (x - x2)];

  ……

  所以,当x1 < x2 < …xk < x < xk+1 <…< xn 时,

  y =  (x1 + x2 + x3 + …… + xn) - n * x + 2[(x - x1) + (x - x2) + ……+ (x - xk)]

   =  (x1 + x2 + x3 + …… + xn)  +  2[ (k - n/2)x - (x1 + x2 + ……+  xk) ]  --(1 - 4)

  对于公式(1 - 4),两边求导,可知当k - n/2 < 0 时,即k < n/2时,y 单调递增; 当k - n/2 > 0 时,即k > n/2时,y 单调递减;因为k= {1,2,3,……n},为整数,若 n 为偶数,则当 k = n/2 时,x = xky 有最小值;若 为 奇数,则当 k = (n + 1)/2时,x = xk有最小值,证毕

  综上所述,得到的最终结论是:当 n 为偶数时,y的最小值为ymin = (xk+1xk+2 + ……+xn) - (x1 + x2 +……+ xk) , k = n/2 ;当 n 为奇数时,y的最小值为ymin = (xk+1 + xk+2 + ……+xn) - (x1 + x2 +……+ xk - 1) , k = (n + 1)/2 .

  回到公式(1 - 2),分别求出(|U - U1| + |U - U2| + ……+ |U - Un|) 和 (|V - V1|  + |V - V2| + ……+ |U - Un| + |V - Vn|)的最小值,求平均数,即得到最小值bestDistance ,为程序所求.

下面贴出我编写的代码,代码十分混乱,可读性不高,仅供参考!

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double bestDistance(int n, const int *x, const int *y);
double bestDistance(int n, const int *x, const int *y)
{
    int iterx = 0, itery = 0,  temp = 0 ;
    int *tempx , *tempy;
    tempx = (int *)malloc(sizeof(int) * n);
    tempy = (int *)malloc(sizeof(int) * n);
    //time infigure
    for(iterx = 0; iterx <= n - 1; iterx++)
    {
        tempx[iterx] = x[iterx] + y[iterx];
    }
    for(iterx = 0; iterx <= n - 1; iterx++)
    {
        //tempy[iterx] = abs(x[iterx] - y[iterx]);
        tempy[iterx] = (x[iterx] - y[iterx]);
    }
//    for(iterx = 0; iterx <= n - 1; iterx++) printf("X%d=%3d  ",iterx,tempx[iterx]);
//    printf("\n");
    for(iterx = 0; iterx <= n - 2; iterx++)
    {
        for(itery = iterx + 1; itery <= n - 1; itery++ )
        {
            if(tempx[iterx] > tempx[itery])
            {
                temp = tempx[iterx];
                tempx[iterx] = tempx[itery];
                tempx[itery] = temp;
            }
        }
    }
//    for(iterx = 0; iterx <= n - 1; iterx++) printf("X%d=%3d  ",iterx,tempx[iterx]);
//    printf("\n");
    for(iterx = 0; iterx <= n - 2; iterx++)
    {
        for(itery = iterx + 1; itery <= n - 1; itery++ )
        {
            if(tempy[iterx] > tempy[itery])
            {
                temp = tempy[iterx];
                tempy[iterx] = tempy[itery];
                tempy[itery] = temp;
            }
        }
    }
    //for(iterx = 0; iterx <= n - 1; iterx++) printf("X%d=%3d  ",iterx,tempy[iterx]);

    long long  sumXM = 0, sumXL = 0 , sumYM = 0 , sumYL = 0;
    int tempN = 0;
    // SUM_Xn - sumXn/2
    for(iterx = 0; iterx <= n / 2 - 1; iterx++)
    {
        sumXL = sumXL + tempx[iterx];
    }
    for(iterx = 0; iterx <= n / 2 - 1; iterx++)
    {
        sumYL = sumYL + tempy[iterx];
    }
    // SUM_Yn - sumYn/2
    if(n % 2 == 0)
    {
        tempN = n / 2 ;
    }
    else
    {
        tempN = n / 2 + 1;
    }
    for(iterx = tempN; iterx <= n - 1; iterx++)
    {
        sumXM = sumXM + tempx[iterx];
    }

    for(iterx = tempN; iterx <= n - 1; iterx++)
    {
        sumYM = sumYM + tempy[iterx];
    }
//    printf("\n(sumXM - sumXL)/2 = %lf\n",(sumXM - sumXL) / 1.0);
//    printf("\n(sumYM - sumYL)/2 = %f\n",(sumYL) / 1.0);
    return (sumXM - sumXL + sumYM - sumYL) / 2.0;
}
int main(void)
{
    //time_t before = time(NULL);
    //printf("before = %ld秒\n", before);
    int x[19] = {858442934,-161749718,-55910439,347569202,-660170269,-982075453,-860790164,947179323,312298821,-285196111,967545126,-777105315,-630974471,-713895350,745616673,840630174,-597730146,-205693089,24677872};
    int y[19] = {449535070,160026431,705809990,121634879,648304545,-392329548,-447666131,-829918127,926665890,943182185,601133076,-848803337,89719473,-586785144,832132969,-111884761,-556530757,65860874,978639057};
    int n = 19;
    printf("\nthe result is %lf",bestDistance(n , x , y));
    //time_t after = time(NULL);
    //printf("after = %ld秒\n", after);

    //printf("总共执行时间为:%ld秒\n", after - before);
    return 0;
}

测试用例有:

int n = 19;

int x[19] = {858442934,-161749718,-55910439,347569202,-660170269,-982075453,-860790164,947179323,312298821,-285196111,967545126,-777105315,-630974471,-713895350,745616673,840630174,-597730146,-205693089,24677872};
int y[19] = {449535070,160026431,705809990,121634879,648304545,-392329548,-447666131,-829918127,926665890,943182185,601133076,-848803337,89719473,-586785144,832132969,-111884761,-556530757,65860874,978639057};

结果是 13560445376.500000

posted on 2013-08-29 21:45  大卫david  阅读(1474)  评论(2编辑  收藏  举报

导航