【python-数据分析】pandas数据提取

import pandas as pd

1. 直接索引

df = pd.DataFrame({'AdmissionDate': ['2021-01-25','2021-01-22','2021-01-20',

                        '2021-01-18','2021-01-17','2021-01-17','2021-01-21'],

                     'StudentID': [7,1,3,2,6,3,4],

                     'Name': ['Jack','Shyam','Mohan','Janne','Lucky','Abhinav','Danny'],

                     'Stream':['CSE','ECE','Civil','Mechanical','CSE','IT','EEE']

                   })
df.set_index("Name",inplace=True)
# 选取某一列或者某几列
print(df["AdmissionDate"])
print(df[["AdmissionDate","StudentID"]])  # 选取多列时,多个列要放到一个list中
Name
Jack       2021-01-25
Shyam      2021-01-22
Mohan      2021-01-20
Janne      2021-01-18
Lucky      2021-01-17
Abhinav    2021-01-17
Danny      2021-01-21
Name: AdmissionDate, dtype: object
        AdmissionDate  StudentID
Name                            
Jack       2021-01-25          7
Shyam      2021-01-22          1
Mohan      2021-01-20          3
Janne      2021-01-18          2
Lucky      2021-01-17          6
Abhinav    2021-01-17          3
Danny      2021-01-21          4
# 按行编号选取连续的行
df[1:3]  # df[start:end], [start,end)闭开区间
AdmissionDate StudentID Stream
Name
Shyam 2021-01-22 1 ECE
Mohan 2021-01-20 3 Civil
# 按行时间索引选取连续的行
df["AdmissionDate"] = pd.to_datetime(df["AdmissionDate"])
df.set_index("AdmissionDate",inplace=True)
# df["2021-01-01":"2021-01-20"]  # 将被弃用
df.sort_index().loc["2021-01-01":"2021-01-20",:]  # 推荐写法
StudentID Stream
AdmissionDate
2021-01-17 6 CSE
2021-01-17 3 IT
2021-01-18 2 Mechanical
2021-01-20 3 Civil

2. 布尔索引

df = pd.DataFrame({'AdmissionDate': ['2021-01-25','2021-01-22','2021-01-20',

                        '2021-01-18','2021-01-17','2021-01-17','2021-01-21'],

                     'StudentID': [7,1,3,2,6,3,4],

                     'Name': ['Jack','Shyam','Mohan','Janne','Lucky','Abhinav','Danny'],

                     'Stream':['CSE','ECE','Civil','Mechanical','CSE','IT','EEE']

                   })
df["AdmissionDate"] = pd.to_datetime(df["AdmissionDate"])
df.set_index("Name",inplace=True)
df
AdmissionDate StudentID Stream
Name
Jack 2021-01-25 7 CSE
Shyam 2021-01-22 1 ECE
Mohan 2021-01-20 3 Civil
Janne 2021-01-18 2 Mechanical
Lucky 2021-01-17 6 CSE
Abhinav 2021-01-17 3 IT
Danny 2021-01-21 4 EEE
# 选取满足某一条件的行
df[df["StudentID"]==2]
AdmissionDate StudentID Stream
Name
Janne 2021-01-18 2 Mechanical
# 选取满足多个条件的行
# 注意:索引列表中,可以使用& |操作符,但不能使用and or not等关键字
from datetime import datetime
df[(df["StudentID"]>=3) & (df["AdmissionDate"]>="2021-01-20")]  # 注意:索引列表中,各布尔条件必须用圆括号扩起来
2021-01-20 00:00:00
AdmissionDate StudentID Stream
Name
Jack 2021-01-25 7 CSE
Mohan 2021-01-20 3 Civil
Danny 2021-01-21 4 EEE
df[(df["StudentID"]>=3) | (df["AdmissionDate"]>="2021-01-20")]
AdmissionDate StudentID Stream
Name
Jack 2021-01-25 7 CSE
Shyam 2021-01-22 1 ECE
Mohan 2021-01-20 3 Civil
Lucky 2021-01-17 6 CSE
Abhinav 2021-01-17 3 IT
Danny 2021-01-21 4 EEE

3. 索引器索引

Dataframe的loc和iloc属性

  • loc属性:
    • 以列名和行名作为参数,当只有一个参数时,默认是行名,即抽取整行数据,包括所有列
  • iloc属性:
    • 以行和列位置索引,作为参数。当只有一个参数时,默认是行索引,即抽取整行数据,包括所有列
df = pd.DataFrame({'AdmissionDate': ['2021-01-25','2021-01-22','2021-01-20',

                        '2021-01-18','2021-01-17','2021-01-17','2021-01-21'],

                     'StudentID': [7,1,3,2,6,3,4],

                     'Name': ['Jack','Shyam','Mohan','Janne','Lucky','Abhinav','Danny'],

                     'Stream':['CSE','ECE','Civil','Mechanical','CSE','IT','EEE']

                   })
df["AdmissionDate"] = pd.to_datetime(df["AdmissionDate"])
df.set_index("Name",inplace=True)
df
AdmissionDate StudentID Stream
Name
Jack 2021-01-25 7 CSE
Shyam 2021-01-22 1 ECE
Mohan 2021-01-20 3 Civil
Janne 2021-01-18 2 Mechanical
Lucky 2021-01-17 6 CSE
Abhinav 2021-01-17 3 IT
Danny 2021-01-21 4 EEE

3.1 loc索引器

# 选取一行, loc["行索引名称"]
df.loc["Jack"]
AdmissionDate    2021-01-25 00:00:00
StudentID                          7
Stream                           CSE
Name: Jack, dtype: object
# df.loc[['行1,行2'],['列1,列2']]:选取行列组合
df.loc[["Jack","Janne"],["StudentID","Stream"]]
StudentID Stream
Name
Jack 7 CSE
Janne 2 Mechanical
# df.loc[(df['列']>条件)]:按条件选取列满足一定条件的行。
df.loc[df["StudentID"]>=2,["Stream","AdmissionDate"]]
Stream AdmissionDate
Name
Jack CSE 2021-01-25
Mohan Civil 2021-01-20
Janne Mechanical 2021-01-18
Lucky CSE 2021-01-17
Abhinav IT 2021-01-17
Danny EEE 2021-01-21
# df.loc[行1:行2,列1:列2]:按列名选取连续的列。冒号前后留空代表开口。
df.loc["Jack":"Janne","AdmissionDate":"StudentID"]
AdmissionDate StudentID
Name
Jack 2021-01-25 7
Shyam 2021-01-22 1
Mohan 2021-01-20 3
Janne 2021-01-18 2

3.2 iloc索引器

iloc索引器与loc索引器的使用几乎相同,唯一不同的是,iloc索引器中只能使用原始索引,不能使用自定义索引。
注意:原始索引初值从0开始,切片前闭后开。自定义索引切片为闭区间

df.iloc[1:3,1:2]
StudentID
Name
Shyam 1
Mohan 3
带步长的索引
df.iloc[::2]

image.png

posted @ 2024-10-12 17:13  berlin-fly  阅读(21)  评论(0编辑  收藏  举报