Java并发之CountDownLatch、CyclicBarrier和Semaphore
CountDownLatch 是能使一组线程等另一组线程都跑完了再继续跑;CyclicBarrier 能够使一组线程在一个时间点上达到同步,可以是一起开始执行全部任务或者一部分任务。
这次说一下 JUC 中的同步器三个主要的成员:CountDownLatch、CyclicBarrier 和 Semaphore(不知道有没有初学者觉得这三个的名字不太好记)。这三个是 JUC 中较为常用的同步器,通过它们可以方便地实现很多线程之间协作的功能。(下面的代码出自 JDK 文档)
CountDownLatch
直译过来就是倒计数(CountDown)门闩(Latch)。倒计数不用说,门闩的意思顾名思义就是阻止前进。在这里就是指 CountDownLatch.await() 方法在倒计数为0之前会阻塞当前线程。
作用
CountDownLatch 的作用和 Thread.join() 方法类似,可用于一组线程和另外一组线程的协作。例如,主线程在做一项工作之前需要一系列的准备工作,只有这些准备工作都完成,主线程才能继续它的工作。这些准备工作彼此独立,所以可以并发执行以提高速度。在这个场景下就可以使用 CountDownLatch 协调线程之间的调度了。在直接创建线程的年代(Java 5.0 之前),我们可以使用 Thread.join()。在 JUC 出现后,因为线程池中的线程不能直接被引用,所以就必须使用 CountDownLatch 了。
示例
下面的这个例子可以理解为 F1 赛车的维修过程,只有 startSignal (可以表示停车,可能名字不太贴合)命令下达之后,维修工才开始干活,只有等所有工人完成工作之后,赛车才能继续。
- class Driver { // ...
- void main() throws InterruptedException {
- CountDownLatch startSignal = new CountDownLatch(1);
- CountDownLatch doneSignal = new CountDownLatch(N);
- for (int i = 0; i < N; ++i) // create and start threads
- new Thread(new Worker(startSignal, doneSignal)).start();
- doSomethingElse(); // don't let run yet
- startSignal.countDown(); // let all threads proceed
- doSomethingElse();
- doneSignal.await(); // wait for all to finish
- }
- }
- class Worker implements Runnable {
- private final CountDownLatch startSignal;
- private final CountDownLatch doneSignal;
- Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
- this.startSignal = startSignal;
- this.doneSignal = doneSignal;
- }
- public void run() {
- try {
- startSignal.await();
- doWork();
- doneSignal.countDown();
- } catch (InterruptedException ex) {} // return;
- }
- void doWork() { ... }
- }
当 startSignal.await() 会阻塞线程,当 startSignal.countDown() 被调用之后,所有 Worker 线程开始执行 doWork() 方法,所以 Worker。doWork() 是几乎同时开始执行的。当 Worker.doWork() 执行完毕后,调用 doneSignal.countDown(),在所有 Worker 线程执行完毕之后,主线程继续执行。
CyclicBarrier
CyclicBarrier 翻译过来叫循环栅栏、循环障碍什么的(还是有点别扭的。所以还是别翻译了,只可意会不可言传啊)。它主要的方法就是一个:await()。await() 方法没被调用一次,计数便会减少1,并阻塞住当前线程。当计数减至0时,阻塞解除,所有在此 CyclicBarrier 上面阻塞的线程开始运行。在这之后,如果再次调用 await() 方法,计数就又会变成 N-1,新一轮重新开始,这便是 Cyclic 的含义所在。
CyclicBarrier 的使用并不难,但需要主要它所相关的异常。除了常见的异常,CyclicBarrier.await() 方法会抛出一个独有的 BrokenBarrierException。这个异常发生在当某个线程在等待本 CyclicBarrier 时被中断或超时或被重置时,其它同样在这个 CyclicBarrier 上等待的线程便会受到 BrokenBarrierException。意思就是说,同志们,别等了,有个小伙伴已经挂了,咱们如果继续等有可能会一直等下去,所有各回各家吧。
CyclicBarrier.await() 方法带有返回值,用来表示当前线程是第几个到达这个 Barrier 的线程。
和 CountDownLatch 一样,CyclicBarrier 同样可以可以在构造函数中设定总计数值。与 CountDownLatch 不同的是,CyclicBarrier 的构造函数还可以接受一个 Runnable,会在 CyclicBarrier 被释放时执行。
import java.util.Random; import java.util.concurrent.CyclicBarrier; /** *//** * CyclicBarrier类似于CountDownLatch也是个计数器, * 不同的是CyclicBarrier数的是调用了CyclicBarrier.await()进入等待的线程数, * 当线程数达到了CyclicBarrier初始时规定的数目时,所有进入等待状态的线程被唤醒并继续。 * CyclicBarrier就象它名字的意思一样,可看成是个障碍, * 所有的线程必须到齐后才能一起通过这个障碍。 * CyclicBarrier初始时还可带一个Runnable的参数, * 此Runnable任务在CyclicBarrier的数目达到后,所有其它线程被唤醒前被执行。 */ public class CyclicBarrierTest { public static class ComponentThread implements Runnable { CyclicBarrier barrier;// 计数器 int ID; // 组件标识 int[] array; // 数据数组 // 构造方法 public ComponentThread(CyclicBarrier barrier, int[] array, int ID) { this.barrier = barrier; this.ID = ID; this.array = array; } public void run() { try { array[ID] = new Random().nextInt(100); System.out.println("Component " + ID + " generates: " + array[ID]); // 在这里等待Barrier处 System.out.println("Component " + ID + " sleep"); barrier.await(); System.out.println("Component " + ID + " awaked"); // 计算数据数组中的当前值和后续值 int result = array[ID] + array[ID + 1]; System.out.println("Component " + ID + " result: " + result); } catch (Exception ex) { } } } /** *//** * 测试CyclicBarrier的用法 */ public static void testCyclicBarrier() { final int[] array = new int[3]; CyclicBarrier barrier = new CyclicBarrier(2, new Runnable() { // 在所有线程都到达Barrier时执行 public void run() { System.out.println("testCyclicBarrier run"); array[2] = array[0] + array[1]; } }); // 启动线程 new Thread(new ComponentThread(barrier, array, 0)).start(); new Thread(new ComponentThread(barrier, array, 1)).start(); } public static void main(String[] args) { CyclicBarrierTest.testCyclicBarrier(); } }
三、Semaphore 信号量
Semaphore翻译成字面意思为 信号量,Semaphore可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。
下面通过一个例子来看一下Semaphore的具体使用:
假若一个工厂有5台机器,但是有8个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用。那么我们就可以通过Semaphore来实现:
public class Test { public static void main(String[] args) { int N = 8; //工人数 Semaphore semaphore = new Semaphore(5); //机器数目 for(int i=0;i<N;i++) new Worker(i,semaphore).start(); } static class Worker extends Thread{ private int num; private Semaphore semaphore; public Worker(int num,Semaphore semaphore){ this.num = num; this.semaphore = semaphore; } @Override public void run() { try { semaphore.acquire(); System.out.println("工人"+this.num+"占用一个机器在生产..."); Thread.sleep(2000); System.out.println("工人"+this.num+"释放出机器"); semaphore.release(); } catch (InterruptedException e) { e.printStackTrace(); } } } }