CMinpack使用介绍

github: https://github.com/devernay/cminpack
主页: http://devernay.github.io/cminpack/
使用手册: http://devernay.github.io/cminpack/man.html

CMinpack配置

从github中clone下来源文件,进入目录后新建build,使用cmake对上一层目录内容进行编译configure->generate。

命令行不熟练可以使用cmake-gui指令,需要选中examples选项才会对样例进行编译。

完成后进入build/examples目录,执行make命令,可以看到已经生成可执行文件,运行其中任意程序进行测试。

再进入到build/cmake目录,执行make命令和make install命令,将cminpack.pc安装到指定目录(我的电脑上安装到了/usr/local/lib64/pkgconfig),最后将这个目录通过/etc/profile添加到pkg的路径当中(别忘了source运行一下)。
在命令行中输入pkg-config opencv –libs –cflags ,如果能够显示路径则成功。
[NOTE] 我对pkg-config的使用并不是很了解,是模仿着opencv进行配置的。

CMake相关详解

[NOTE] 因此自己对CMake使用还很不熟练,因此找机会对CMakeList.txt进行学习。

${CMINPACK_SOURCE_DIR}/CMakeList.txt

# 因为Markdown没有支持CMakeList.txt的高亮,因此用Makefile的高亮将就一下。

# The name of our project is "CMINPACK". CMakeLists files in this project can
# refer to the root source directory of the project as ${CMINPACK_SOURCE_DIR} and
# to the root binary directory of the project as ${CMINPACK_BINARY_DIR}.
# CMINPACK_SOURCE_DIR: CMinpack源代码的根目录
# CMINPACK_BINARY_DIR: CMinpack二进制文件的根目录

# 要求的最小CMake版本号
cmake_minimum_required (VERSION 2.6)

# 项目名称:CMINPACK
project (CMINPACK)

# PROJECT_NAME: CMINPACK
# PROJECT_NAME_LOWER: cminpack
string(TOLOWER ${PROJECT_NAME} PROJECT_NAME_LOWER)

# include其他CMake命令
# 在cminpack_utils.cmake这个文件中定义了GET_OS_INFO和DISSECT_VERSION两个宏指令,后面进行详细介绍。
include(${PROJECT_SOURCE_DIR}/cmake/cminpack_utils.cmake)
# Set version and OS-specific settings
# CACHE: 缓存到本地文件
set(CMINPACK_VERSION 1.3.6 CACHE STRING "CMinpack version")
set(CMINPACK_SOVERSION 1 CACHE STRING "CMinpack API version")
# 在cminpack_utils.cmake中定义的两个宏
DISSECT_VERSION()
GET_OS_INFO()

# Add an "uninstall" target
# CONFIGURE_FILE: 让普通文件也能使用CMake中的变量
# 输入文件: uninstall_target.cmake.in
# 输出文件: uninstall_target.cmake
# IMMEDIATE: 暂时没找到意思
# @ONLY: 限制只替换被@VAR@引用的变量(${VAR}格式的变量不会被替换)
CONFIGURE_FILE ("${PROJECT_SOURCE_DIR}/cmake/uninstall_target.cmake.in" "${PROJECT_BINARY_DIR}/uninstall_target.cmake" IMMEDIATE @ONLY)

# ADD_CUSTOM_TARGET: 增加一个没有输出的目标,使得它总是被构建
# CMAKE_COMMAND: 指向CMake可执行文件的完整路径
ADD_CUSTOM_TARGET (uninstall "${CMAKE_COMMAND}" -P "${PROJECT_BINARY_DIR}/uninstall_target.cmake")

# 需要注意,ctest期望在build目录下找到测试文件。
enable_testing()

if (OS_LINUX OR ${CMAKE_SYSTEM_NAME} STREQUAL "FreeBSD")
  option (USE_FPIC "Use the -fPIC compiler flag." ON)
else (OS_LINUX)
  option (USE_FPIC "Use the -fPIC compiler flag." OFF)
endif (OS_LINUX)

# 生成SHARED库的选项
option (BUILD_SHARED_LIBS "Build shared libraries instead of static." OFF)
if (BUILD_SHARED_LIBS)
  message (STATUS "Building shared libraries.")
else ()
  message (STATUS "Building static libraries.")
  set(CMAKE_RELEASE_POSTFIX _s)
  set(CMAKE_RELWITHDEBINFO_POSTFIX _s)
  set(CMAKE_DEBUG_POSTFIX _s)
  set(CMAKE_MINSIZEREL_POSTFIX _s)
  if(WIN32)
    add_definitions(-DCMINPACK_NO_DLL)
  endif(WIN32)
endif ()

option(USE_BLAS "Compile cminpack using a blas library if possible" ON)

#set(CMAKE_INSTALL_PREFIX ${PROJECT_SOURCE_DIR}/../build)

# 添加头文件目录
if(NOT "${CMAKE_PREFIX_PATH}" STREQUAL "")
  include_directories(${CMAKE_PREFIX_PATH}/include)
endif()

# cminpack_srcs: 源代码文件
set (cminpack_srcs
  cminpack.h cminpackP.h
  chkder.c  enorm.c   hybrd1.c  hybrj.c   lmdif1.c  lmstr1.c  qrfac.c   r1updt.c
  dogleg.c  fdjac1.c  hybrd.c   lmder1.c  lmdif.c   lmstr.c   qrsolv.c  rwupdt.c
  dpmpar.c  fdjac2.c  hybrj1.c  lmder.c   lmpar.c   qform.c   r1mpyq.c  covar.c covar1.c
  minpack.h
  chkder_.c enorm_.c  hybrd1_.c hybrj_.c  lmdif1_.c lmstr1_.c qrfac_.c  r1updt_.c
  dogleg_.c fdjac1_.c hybrd_.c  lmder1_.c lmdif_.c  lmstr_.c  qrsolv_.c rwupdt_.c
  dpmpar_.c fdjac2_.c hybrj1_.c lmder_.c  lmpar_.c  qform_.c  r1mpyq_.c covar_.c
  )
# cminpack_hdrs: 头文件
set (cminpack_hdrs
    cminpack.h minpack.h)

# 添加一个名为cminpack的库
add_library (cminpack ${cminpack_srcs})

if (${CMAKE_SYSTEM_NAME} STREQUAL "FreeBSD")
  TARGET_LINK_LIBRARIES(cminpack m)
endif()

# Link with a BLAS library if requested
if (USE_BLAS)
  if (NOT BUILD_SHARED_LIBS)
    set(BLA_STATIC True)
  endif()
  find_package(BLAS)
  if (BLAS_FOUND)
    target_link_libraries(cminpack PUBLIC ${BLAS_LIBRARIES})
    set_target_properties(cminpack PROPERTIES LINK_FLAGS "${BLAS_LINKER_FLAGS}")
    target_compile_definitions(cminpack PUBLIC -DUSE_CBLAS)
  endif()
endif()

# install: 为工程生成安装规则
# TARGETS版本的install命令
install (TARGETS cminpack
   # 模块库
   LIBRARY DESTINATION ${CMINPACK_LIB_INSTALL_DIR} COMPONENT library
   # 静态链接的库文件
   ARCHIVE DESTINATION ${CMINPACK_LIB_INSTALL_DIR} COMPONENT library
   # 动态库
   RUNTIME DESTINATION bin COMPONENT library)
# FILES版本的install命令
# 以相对路径方式给出的文件名是相对当前源代码路径而言的,默认具有OWNER_WRITE, OWNER_READ, GROUP_READ和WORLD_READ权限
install (FILES ${cminpack_hdrs} DESTINATION ${CMINPACK_INCLUDE_INSTALL_DIR}
    COMPONENT cminpack_hdrs)

if (USE_FPIC AND NOT BUILD_SHARED_LIBS)
  set_target_properties (cminpack PROPERTIES COMPILE_FLAGS -fPIC)
endif ()

set_target_properties(cminpack PROPERTIES VERSION ${CMINPACK_VERSION} SOVERSION ${CMINPACK_SOVERSION})

# add_subdirectory: 添加子项目
add_subdirectory (cmake)
add_subdirectory (examples)

${CMINPACK_SOURCE_DIR}/cmake/cminpack_utils.cmake

# 获取系统信息,设置安装位置
macro(GET_OS_INFO)
    # string(REGEX MATCH 正则表达 输出变量 )
    string(REGEX MATCH "Linux" OS_LINUX ${CMAKE_SYSTEM_NAME})
    string(REGEX MATCH "BSD" OS_BSD ${CMAKE_SYSTEM_NAME})
    if(WIN32)
        set(OS_WIN TRUE)
    endif(WIN32)

    if(NOT DEFINED CMINPACK_LIB_INSTALL_DIR)
    set(CMINPACK_LIB_INSTALL_DIR "lib")
    if(OS_LINUX)
        if(${CMAKE_SYSTEM_PROCESSOR} STREQUAL "x86_64")
            set(CMINPACK_LIB_INSTALL_DIR "lib64")
        else(${CMAKE_SYSTEM_PROCESSOR} STREQUAL "x86_64")
            set(CMINPACK_LIB_INSTALL_DIR "lib")
        endif(${CMAKE_SYSTEM_PROCESSOR} STREQUAL "x86_64")
        message (STATUS "Operating system is Linux")
    elseif(OS_BSD)
        message (STATUS "Operating system is BSD")
    elseif(OS_WIN)
        message (STATUS "Operating system is Windows")
    else(OS_LINUX)
        message (STATUS "Operating system is generic Unix")
    endif(OS_LINUX)
    endif(NOT DEFINED CMINPACK_LIB_INSTALL_DIR)
    # 比如/usr/local/include/cminpack-1
    set(CMINPACK_INCLUDE_INSTALL_DIR "include/${PROJECT_NAME_LOWER}-${CMINPACK_MAJOR_VERSION}")
endmacro(GET_OS_INFO)

# 解剖CMinpack版本号
macro(DISSECT_VERSION)
    # Find version components
    string(REGEX REPLACE "^([0-9]+).*" "\\1"
        CMINPACK_MAJOR_VERSION "${CMINPACK_VERSION}")
    string(REGEX REPLACE "^[0-9]+\\.([0-9]+).*" "\\1"
        CMINPACK_MINOR_VERSION "${CMINPACK_VERSION}")
    string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.([0-9]+)" "\\1"
        CMINPACK_REVISION_VERSION ${CMINPACK_VERSION})
    string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+(.*)" "\\1"
        CMINPACK_CANDIDATE_VERSION ${CMINPACK_VERSION})
endmacro(DISSECT_VERSION)

${CMINPACK_SOURCE_DIR}/examples/CMakeLists.txt

# 可选项
# option (选项名 "选项注释" 默认内容)
option (BUILD_EXAMPLES "Build the examples and tests." ON)
option (BUILD_EXAMPLES_FORTRAN "Build the FORTRAN examples and tests." OFF)

if (BUILD_EXAMPLES)
  # Make sure the compiler can find include files from our cminpack library.
  include_directories (${CMINPACK_SOURCE_DIR})

  # Make sure the linker can find the cminpack library once it is built.
  link_directories (${CMINPACK_BINARY_DIR})

  # 设置变量内容
  # set(变量 内容)
  set (FPGM tchkder thybrd thybrd1 thybrj thybrj1 tlmder tlmder1 tlmdif tlmdif1 tlmstr tlmstr1)
  set (CPGM ${FPGM} tfdjac2)

  # cmpfile: 用于一行行地比较两个文件的异同
  # cmpfiles could be used by runtest.cmake... for now it's unused
  # add_executable(可执行文件名称 源文件)
  add_executable (cmpfiles cmpfiles.c)

  # inspired by http://www.netlib.org/clapack/clapack-3.2.1-CMAKE/TESTING/CMakeLists.txt
  # except that here we have to compare the output to a reference
  # 测试部分跳过不看
  macro(add_minpack_test testname reference)
    set(TEST_OUTPUT "${CMINPACK_BINARY_DIR}/examples/${testname}.out")
    set(TEST_REFERENCE "${CMINPACK_SOURCE_DIR}/examples/ref/${reference}.ref")
    get_target_property(TEST_LOC ${testname} LOCATION)
    add_test(${testname} "${CMAKE_COMMAND}"
      -DTEST=${TEST_LOC}
      -DOUTPUT=${TEST_OUTPUT} 
      -DREFERENCE=${TEST_REFERENCE} 
      -DINTDIR=${CMAKE_CFG_INTDIR}
      -P "${CMINPACK_SOURCE_DIR}/examples/runtest.cmake")
  endmacro(add_minpack_test)

  # 遍历处理每一个目标文件
  foreach (source ${CPGM})
    add_executable (${source}_ ${source}_.c)
    target_link_libraries (${source}_ cminpack)
    if (OS_LINUX)
      target_link_libraries (${source}_ m)
    endif (OS_LINUX)
    add_minpack_test(${source}_ ${source}c)
    add_executable (${source}c ${source}c.c)
    target_link_libraries (${source}c cminpack)
    if (OS_LINUX)
      target_link_libraries (${source}c m)
    endif (OS_LINUX)
    add_minpack_test(${source}c ${source}c)
  endforeach(source)
endif (BUILD_EXAMPLES)

# FORTRAN部分跳过不看

第一个CMinpack程序

根据我们阅读给出的测试样例的CMake相关文件,我们可以开始动手写自己的第一个CMinpack程序。
新建目录,目录下放着我们要运行的使用了CMinpack的程序my-cminpack-demo.c。
开始编写CMakeLists.txt文件,首先提取出我们需要的内容:

project(my-cminpack-demo)
cmake_minimum_required (VERSION 2.6)

include_directories (${CMINPACK_SOURCE_DIR})
link_directories (${CMINPACK_BINARY_DIR})

add_executable (my-cminpack-demo my-cminpack-demo.c)
target_link_libraries (my-cminpack-demo cminpack)
if (OS_LINUX)
  target_link_libraries (my-cminpack-demo m)
endif (OS_LINUX)

然后新建build目录,在build目录下运行cmake ..
发现会跳出找不到sqrt函数的错误,这个我们能够一下子联想到是Linux系统下没有连接到m库文件的原因。虽然我不知道这个判断为什么无法执行,但是我们已知在Linux环境下,把它去掉。
得到最终的CMakeLists.txt:

project(my-cminpack-demo)
cmake_minimum_required (VERSION 2.6)

include_directories (${CMINPACK_SOURCE_DIR})
link_directories (${CMINPACK_BINARY_DIR})

add_executable (my-cminpack-demo my-cminpack-demo.c)
target_link_libraries (my-cminpack-demo cminpack)
target_link_libraries (my-cminpack-demo m)

虽然我们make得到可执行文件,运行后查看结果(图中我使用了tlmdif_.c作为测试)

LMDIF使用说明

官方英文介绍:http://devernay.github.io/cminpack/lmdif_.html

包括函数名

lmdif, lmdif1_ - 最小化非线性函数平方和

函数概要

include <minpack.h>
void lmdif1_(void (*fcn)(int *m, int *n, double *x, double *fvec, int *iflag),
    int *m, int *n, double *x, double *fvec,
    double *tol, int *info, int *iwa, double *wa, int *lwa);


void lmdif_(void (*fcn)(int *m, int *n, double *x,  double *fvec, int *iflag),
            int *m, int *n, double *x, double *fvec,
            double *ftol, double *xtol, double *gtol, int *maxfev, double *epsfcn, double *diag, 
            int *mode, double *factor, int *nprint, int *info, int *nfev, double *fjac,
            int *ldfjac, int *ipvt, double *qtf,
            double *wa1, double *wa2, double *wa3, double *wa4 );

详细描述

lmdif_的目的是最小化m个n元非线性方程的平方和,使用的方法是LM算法的改进。用户需要提供计算方程的子程序。Jacobian矩阵会通过一个前向差分(forward-difference)近似计算得到。
lmdif1_是相同的目的,但是调用方法更简单一些。

语言备注

这些函数是通过FORTRAN写的,如果从C调用,需要记住以下几点:

  • 名称重编:
    • 2.95/3.0版本的g77下,所有函数以下划线结尾,后续版本可能会更改;
  • 使用g77编译:
    • 即使你的程序全部用C语言写成,你也需要使用gcc进行链接,因为这样它会自动导入FORTRAN库。只使用g77进行编译是最方便的(它处理C语言也是OK的);
  • 通过引用调用:
    • 所有函数参数都是指针;
  • 列优先数组:
    • z( i , j ) = z[ ( i - 1 ) + ( j - 1 ) * n
    • fcn是用户提供用于计算函数的子程序。在C语言当中fcn需要如下定义:
void fcn(int m, int n, double *x, double *fvec, int *iflag) {
    /* 计算函数在x点的值,通过fvec返回。*/
}

iflag的值不能被fcn所修改,除非用户想要终止lmdif/lmdif1_。在这个例子中iflag设置为负整数。

lmdif_和lmdif1_的共同参数

m:函数个数;
n:变量个数(n<=m)
x:长度为n的数组,设置为初始的估计解向量。输出的时候x内容为最终估计的解向量。
fvec:输出长度为m的数组,内容为最终输出x计算得到的函数解。

lmdif1_的参数

tol:作为输入,非负数。用于函数终止的条件判断:

  • 平方和小于tol;
  • x之间的相对误差小于tol;

info:作为输出。如果用户终止了函数的执行,info将被设置为iflag的值(负数)(详细见fcn的描述),否则,info的值如下几种情况:

  • 0:输入参数不合适;
  • 1:平方和的相对误差小于tol;
  • 2:x之间的相对误差小于tol;
  • 3:1/2两种情况同时符合;
  • 4: fvec is orthogonal to the columns of the Jacobian to machine precision(这个情况是什么暂时不是很清楚)
  • 5:调用fcn的次数达到了200*(n+1)次;
  • 6:tol设置过小,平方和无法达到那么小;
  • 7:tol设置过小,x的近似解无法优化到误差达到那么小。

iwa:长度n的工作数组;
wa:长度lwa的工作数组;
lwa:作为输入,整数,不能小于mn+5n+m;
[NOTE] 这三个输入我也不知道作用,从样例来看不需要初始化。

lmdif_的参数

暂时不用这部分,跳过。

官方样例解读

源码: https://github.com/devernay/cminpack/blob/d1f5f5a273862ca1bbcf58394e4ac060d9e22c76/examples/tlmdif1_.c

/*     lmdif1 例子. */
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <minpack.h>
#define real __minpack_real__

// 用户自定义的函数f()
// real -> __cminpack_real__ -> 浮点数(double)
void fcn(const int *m, const int *n, const real *x, real *fvec, int *iflag);

int main()
{
  int j, m, n, info, lwa, iwa[3], one=1;
  real tol, fnorm, x[3], fvec[15], wa[75];

  // 函数个数15; 变量数3
  m = 15;
  n = 3;

  // 初始位置做粗略估计
  // 1.e0 = 1.0e0 = 1.0
  x[0] = 1.e0;
  x[1] = 1.e0;
  x[2] = 1.e0;

  // 为什么要设置75?
  lwa = 75;

  /* set tol to the square root of the machine precision.  unless high
     precision solutions are required, this is the recommended
     setting. */
  // (建议打印一下看值是多少)

  tol = sqrt(__minpack_func__(dpmpar)(&one));

  // 需要注意指针
  __minpack_func__(lmdif1)(&fcn, &m, &n, x, fvec, &tol, &info, iwa, wa, &lwa);

  // 最终的2范数(即平方和开根号)
  fnorm = __minpack_func__(enorm)(&m, fvec);
  printf("      final l2 norm of the residuals%15.7g\n\n", (double)fnorm);
  printf("      exit parameter                %10i\n\n", info);
  printf("      final approximate solution\n");
  for (j=1; j<=n; j++) {
    printf("%s%15.7g", j%3==1?"\n ":"", (double)x[j-1]);
  }
  printf("\n");
  return 0;
}

//        The problem is to determine the values of x(1), x(2), and x(3)
//        which provide the best fit (in the least squares sense) of
//              x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),  i = 1, 15
//        to the data
//              y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
//                   0.37,0.58,0.73,0.96,1.34,2.10,4.39),
//        where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)).  The
//        i-th component of FVEC is thus defined by
//              y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

void fcn(const int *m, const int *n, const real *x, real *fvec, int *iflag)
{
  /* function fcn for lmdif1 example */

  int i;
  real tmp1,tmp2,tmp3;

  // 实际的y值
  real y[15]={1.4e-1,1.8e-1,2.2e-1,2.5e-1,2.9e-1,3.2e-1,3.5e-1,3.9e-1,
              3.7e-1,5.8e-1,7.3e-1,9.6e-1,1.34e0,2.1e0,4.39e0};
  assert(*m == 15 && *n == 3);


  if (*iflag == 0) {
    /*      insert print statements here when nprint is positive. */
    /* if the nprint parameter to lmder is positive, the function is
       called every nprint iterations with iflag=0, so that the
       function may perform special operations, such as printing
       residuals. */
    // 这段没有很看懂,在??情况下打印信息
    return;
  }

  /* compute residuals */

  for (i=0; i<15; i++) {
    tmp1 = i+1;
    tmp2 = 15 - i;
    tmp3 = tmp1;
    if (i >= 8) {
      tmp3 = tmp2;
    }
    fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
  }
}

[NOTE] 其他内容有待更新

posted @ 2019-07-18 12:37  Bemfoo  阅读(2058)  评论(0编辑  收藏  举报