Loading

PaddlePaddle 飞桨复现 VGG16

import paddle.nn as nn
class VGG16(nn.Layer):
    def __init__(self, num_classes=1000):
        super(VGG16, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2D(3, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(64),
            nn.ReLU(),
        )
        self.layer2 = nn.Sequential(
            nn.Conv2D(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(64),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=2, stride=2)
        )

        self.layer3 = nn.Sequential(
            nn.Conv2D(64, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(128),
            nn.ReLU(),
        )
        self.layer4 = nn.Sequential(
            nn.Conv2D(128, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(128),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=2, stride=2)
        )

        self.layer5 = nn.Sequential(
            nn.Conv2D(128, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(256),
            nn.ReLU(),
        )
        self.layer6 = nn.Sequential(
            nn.Conv2D(256, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(256),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=2, stride=2)
        )
        self.layer7 = nn.Sequential(
            nn.Conv2D(256, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(512),
            nn.ReLU(),
        )
        self.layer8 = nn.Sequential(
            nn.Conv2D(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(512),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=2, stride=2)
        )

        self.layer9 = nn.Sequential(
            nn.Conv2D(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(512),
            nn.ReLU(),
        )
        self.layer10 = nn.Sequential(
            nn.Conv2D(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(512),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=2, stride=2)
        )

        self.layer11 = nn.Sequential(
            nn.Conv2D(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(512),
            nn.ReLU(),
        )
        self.layer12 = nn.Sequential(
            nn.Conv2D(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(512),
            nn.ReLU(),
        )
        self.layer13 = nn.Sequential(
            nn.Conv2D(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(512),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=2, stride=2)
        )

        self.fc = nn.Sequential(
            nn.Dropout(0.5),
            nn.Linear(4*4*512, 4096),
            nn.ReLU())
        self.fc1 = nn.Sequential(
            nn.Dropout(0.5),
            nn.Linear(4096, 512),
            nn.ReLU())
        self.fc2= nn.Sequential(
            nn.Linear(512, num_classes))
      
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.layer5(out)
        out = self.layer6(out)
        out = self.layer7(out)
        out = self.layer8(out)
        out = self.layer9(out)
        out = self.layer10(out)
        out = self.layer11(out)
        out = self.layer12(out)
        out = self.layer13(out)
        out = paddle.reshape(out, [out.shape[0],-1])
        out = self.fc(out)
        out = self.fc1(out)
        out = self.fc2(out)
        return out

paddle.Model(VGG16(num_classes=2)).summary((-1,3,256,256))
W0505 00:38:12.705672 18379 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0505 00:38:12.711607 18379 device_context.cc:465] device: 0, cuDNN Version: 7.6.
---------------------------------------------------------------------------
 Layer (type)       Input Shape          Output Shape         Param #  
===========================================================================
   Conv2D-1      [[1, 3, 256, 256]]   [1, 64, 256, 256]        1,792   
 BatchNorm2D-1  [[1, 64, 256, 256]]   [1, 64, 256, 256]         256    
    ReLU-1      [[1, 64, 256, 256]]   [1, 64, 256, 256]          0     
   Conv2D-2     [[1, 64, 256, 256]]   [1, 64, 256, 256]       36,928   
 BatchNorm2D-2  [[1, 64, 256, 256]]   [1, 64, 256, 256]         256    
    ReLU-2      [[1, 64, 256, 256]]   [1, 64, 256, 256]          0     
  MaxPool2D-1   [[1, 64, 256, 256]]   [1, 64, 128, 128]          0     
   Conv2D-3     [[1, 64, 128, 128]]   [1, 128, 128, 128]      73,856   
 BatchNorm2D-3  [[1, 128, 128, 128]]  [1, 128, 128, 128]        512    
    ReLU-3      [[1, 128, 128, 128]]  [1, 128, 128, 128]         0     
   Conv2D-4     [[1, 128, 128, 128]]  [1, 128, 128, 128]      147,584  
 BatchNorm2D-4  [[1, 128, 128, 128]]  [1, 128, 128, 128]        512    
    ReLU-4      [[1, 128, 128, 128]]  [1, 128, 128, 128]         0     
  MaxPool2D-2   [[1, 128, 128, 128]]   [1, 128, 64, 64]          0     
   Conv2D-5      [[1, 128, 64, 64]]    [1, 256, 64, 64]       295,168  
 BatchNorm2D-5   [[1, 256, 64, 64]]    [1, 256, 64, 64]        1,024   
    ReLU-5       [[1, 256, 64, 64]]    [1, 256, 64, 64]          0     
   Conv2D-6      [[1, 256, 64, 64]]    [1, 256, 64, 64]       590,080  
 BatchNorm2D-6   [[1, 256, 64, 64]]    [1, 256, 64, 64]        1,024   
    ReLU-6       [[1, 256, 64, 64]]    [1, 256, 64, 64]          0     
  MaxPool2D-3    [[1, 256, 64, 64]]    [1, 256, 32, 32]          0     
   Conv2D-7      [[1, 256, 32, 32]]    [1, 512, 32, 32]      1,180,160   
 BatchNorm2D-7   [[1, 512, 32, 32]]    [1, 512, 32, 32]        2,048   
    ReLU-7       [[1, 512, 32, 32]]    [1, 512, 32, 32]          0     
   Conv2D-8      [[1, 512, 32, 32]]    [1, 512, 32, 32]      2,359,808   
 BatchNorm2D-8   [[1, 512, 32, 32]]    [1, 512, 32, 32]        2,048   
    ReLU-8       [[1, 512, 32, 32]]    [1, 512, 32, 32]          0     
  MaxPool2D-4    [[1, 512, 32, 32]]    [1, 512, 16, 16]          0     
   Conv2D-9      [[1, 512, 16, 16]]    [1, 512, 16, 16]      2,359,808   
 BatchNorm2D-9   [[1, 512, 16, 16]]    [1, 512, 16, 16]        2,048   
    ReLU-9       [[1, 512, 16, 16]]    [1, 512, 16, 16]          0     
   Conv2D-10     [[1, 512, 16, 16]]    [1, 512, 16, 16]      2,359,808   
BatchNorm2D-10   [[1, 512, 16, 16]]    [1, 512, 16, 16]        2,048   
    ReLU-10      [[1, 512, 16, 16]]    [1, 512, 16, 16]          0     
  MaxPool2D-5    [[1, 512, 16, 16]]     [1, 512, 8, 8]           0     
   Conv2D-11      [[1, 512, 8, 8]]      [1, 512, 8, 8]       2,359,808   
BatchNorm2D-11    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048   
    ReLU-11       [[1, 512, 8, 8]]      [1, 512, 8, 8]           0     
   Conv2D-12      [[1, 512, 8, 8]]      [1, 512, 8, 8]       2,359,808   
BatchNorm2D-12    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048   
    ReLU-12       [[1, 512, 8, 8]]      [1, 512, 8, 8]           0     
   Conv2D-13      [[1, 512, 8, 8]]      [1, 512, 8, 8]       2,359,808   
BatchNorm2D-13    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048   
    ReLU-13       [[1, 512, 8, 8]]      [1, 512, 8, 8]           0     
  MaxPool2D-6     [[1, 512, 8, 8]]      [1, 512, 4, 4]           0     
   Dropout-1        [[1, 8192]]           [1, 8192]              0     
   Linear-1         [[1, 8192]]           [1, 4096]         33,558,528   
    ReLU-14         [[1, 4096]]           [1, 4096]              0     
   Dropout-2        [[1, 4096]]           [1, 4096]              0     
   Linear-2         [[1, 4096]]            [1, 512]          2,097,664   
    ReLU-15          [[1, 512]]            [1, 512]              0     
   Linear-3          [[1, 512]]             [1, 2]             1,026   
===========================================================================
Total params: 52,159,554
Trainable params: 52,141,634
Non-trainable params: 17,920
---------------------------------------------------------------------------
Input size (MB): 0.75
Forward/backward pass size (MB): 383.73
Params size (MB): 198.97
Estimated Total Size (MB): 583.45
---------------------------------------------------------------------------

{'total_params': 52159554, 'trainable_params': 52141634}
posted @ 2023-05-09 01:08  belhomme  阅读(39)  评论(0编辑  收藏  举报