Loading

PaddlePaddle 飞桨复现 ResNet34

import paddle.nn as nn
class ResidualBlock(nn.Layer):
    def __init__(self, in_channels, out_channels, stride = 1, downsample = None):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Sequential(
                        nn.Conv2D(in_channels, out_channels, kernel_size = 3, stride = stride, padding = 1),
                        nn.BatchNorm2D(out_channels),
                        nn.ReLU())
        self.conv2 = nn.Sequential(
                        nn.Conv2D(out_channels, out_channels, kernel_size = 3, stride = 1, padding = 1),
                        nn.BatchNorm2D(out_channels))
        self.downsample = downsample
        self.relu = nn.ReLU()
        self.out_channels = out_channels
        
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.conv2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out
    
class ResNet(nn.Layer):
    def __init__(self, block, layers, num_classes = 1000):
        super(ResNet, self).__init__()
        self.inplanes = 64
        self.conv1 = nn.Sequential(
                        nn.Conv2D(3, 64, kernel_size = 7, stride = 2, padding = 3),
                        nn.BatchNorm2D(64),
                        nn.ReLU())
        self.maxpool = nn.MaxPool2D(kernel_size = 3, stride = 2, padding = 1)
        self.layer0 = self._make_layer(block, 64, layers[0], stride = 1)
        self.layer1 = self._make_layer(block, 128, layers[1], stride = 2)
        self.layer2 = self._make_layer(block, 256, layers[2], stride = 2)
        self.layer3 = self._make_layer(block, 512, layers[3], stride = 2)
        self.avgpool = nn.AvgPool2D(7, stride=1)
        self.fc = nn.Linear(2048, num_classes)
        
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes:
            
            downsample = nn.Sequential(
                nn.Conv2D(self.inplanes, planes, kernel_size=1, stride=stride),
                nn.BatchNorm2D(planes),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)
    
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.layer0(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)

        x = self.avgpool(x)
        # x = x.view(x.size(0), -1)
        x = paddle.reshape(x, [x.shape[0],-1])
        x = self.fc(x)

        return x


model = ResNet(ResidualBlock, [3, 4, 6, 3], num_classes=2)#模型实例化
paddle.Model(model).summary((-1, 3, 256, 256))
W0505 09:07:12.146911  5588 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0505 09:07:12.151273  5588 device_context.cc:465] device: 0, cuDNN Version: 7.6.
----------------------------------------------------------------------------
  Layer (type)       Input Shape          Output Shape         Param #    
============================================================================
    Conv2D-1      [[1, 3, 256, 256]]   [1, 64, 128, 128]        9,472     
 BatchNorm2D-1   [[1, 64, 128, 128]]   [1, 64, 128, 128]         256      
     ReLU-1      [[1, 64, 128, 128]]   [1, 64, 128, 128]          0       
  MaxPool2D-1    [[1, 64, 128, 128]]    [1, 64, 64, 64]           0       
    Conv2D-2      [[1, 64, 64, 64]]     [1, 64, 64, 64]        36,928     
 BatchNorm2D-2    [[1, 64, 64, 64]]     [1, 64, 64, 64]          256      
     ReLU-2       [[1, 64, 64, 64]]     [1, 64, 64, 64]           0       
    Conv2D-3      [[1, 64, 64, 64]]     [1, 64, 64, 64]        36,928     
 BatchNorm2D-3    [[1, 64, 64, 64]]     [1, 64, 64, 64]          256      
     ReLU-3       [[1, 64, 64, 64]]     [1, 64, 64, 64]           0       
ResidualBlock-1   [[1, 64, 64, 64]]     [1, 64, 64, 64]           0       
    Conv2D-4      [[1, 64, 64, 64]]     [1, 64, 64, 64]        36,928     
 BatchNorm2D-4    [[1, 64, 64, 64]]     [1, 64, 64, 64]          256      
     ReLU-4       [[1, 64, 64, 64]]     [1, 64, 64, 64]           0       
    Conv2D-5      [[1, 64, 64, 64]]     [1, 64, 64, 64]        36,928     
 BatchNorm2D-5    [[1, 64, 64, 64]]     [1, 64, 64, 64]          256      
     ReLU-5       [[1, 64, 64, 64]]     [1, 64, 64, 64]           0       
ResidualBlock-2   [[1, 64, 64, 64]]     [1, 64, 64, 64]           0       
    Conv2D-6      [[1, 64, 64, 64]]     [1, 64, 64, 64]        36,928     
 BatchNorm2D-6    [[1, 64, 64, 64]]     [1, 64, 64, 64]          256      
     ReLU-6       [[1, 64, 64, 64]]     [1, 64, 64, 64]           0       
    Conv2D-7      [[1, 64, 64, 64]]     [1, 64, 64, 64]        36,928     
 BatchNorm2D-7    [[1, 64, 64, 64]]     [1, 64, 64, 64]          256      
     ReLU-7       [[1, 64, 64, 64]]     [1, 64, 64, 64]           0       
ResidualBlock-3   [[1, 64, 64, 64]]     [1, 64, 64, 64]           0       
    Conv2D-9      [[1, 64, 64, 64]]     [1, 128, 32, 32]       73,856     
 BatchNorm2D-9    [[1, 128, 32, 32]]    [1, 128, 32, 32]         512      
     ReLU-8       [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
   Conv2D-10      [[1, 128, 32, 32]]    [1, 128, 32, 32]       147,584    
 BatchNorm2D-10   [[1, 128, 32, 32]]    [1, 128, 32, 32]         512      
    Conv2D-8      [[1, 64, 64, 64]]     [1, 128, 32, 32]        8,320     
 BatchNorm2D-8    [[1, 128, 32, 32]]    [1, 128, 32, 32]         512      
     ReLU-9       [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
ResidualBlock-4   [[1, 64, 64, 64]]     [1, 128, 32, 32]          0       
   Conv2D-11      [[1, 128, 32, 32]]    [1, 128, 32, 32]       147,584    
 BatchNorm2D-11   [[1, 128, 32, 32]]    [1, 128, 32, 32]         512      
    ReLU-10       [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
   Conv2D-12      [[1, 128, 32, 32]]    [1, 128, 32, 32]       147,584    
 BatchNorm2D-12   [[1, 128, 32, 32]]    [1, 128, 32, 32]         512      
    ReLU-11       [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
ResidualBlock-5   [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
   Conv2D-13      [[1, 128, 32, 32]]    [1, 128, 32, 32]       147,584    
 BatchNorm2D-13   [[1, 128, 32, 32]]    [1, 128, 32, 32]         512      
    ReLU-12       [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
   Conv2D-14      [[1, 128, 32, 32]]    [1, 128, 32, 32]       147,584    
 BatchNorm2D-14   [[1, 128, 32, 32]]    [1, 128, 32, 32]         512      
    ReLU-13       [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
ResidualBlock-6   [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
   Conv2D-15      [[1, 128, 32, 32]]    [1, 128, 32, 32]       147,584    
 BatchNorm2D-15   [[1, 128, 32, 32]]    [1, 128, 32, 32]         512      
    ReLU-14       [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
   Conv2D-16      [[1, 128, 32, 32]]    [1, 128, 32, 32]       147,584    
 BatchNorm2D-16   [[1, 128, 32, 32]]    [1, 128, 32, 32]         512      
    ReLU-15       [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
ResidualBlock-7   [[1, 128, 32, 32]]    [1, 128, 32, 32]          0       
   Conv2D-18      [[1, 128, 32, 32]]    [1, 256, 16, 16]       295,168    
 BatchNorm2D-18   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-16       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-19      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-19   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
   Conv2D-17      [[1, 128, 32, 32]]    [1, 256, 16, 16]       33,024     
 BatchNorm2D-17   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-17       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
ResidualBlock-8   [[1, 128, 32, 32]]    [1, 256, 16, 16]          0       
   Conv2D-20      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-20   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-18       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-21      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-21   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-19       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
ResidualBlock-9   [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-22      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-22   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-20       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-23      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-23   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-21       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
ResidualBlock-10  [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-24      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-24   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-22       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-25      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-25   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-23       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
ResidualBlock-11  [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-26      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-26   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-24       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-27      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-27   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-25       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
ResidualBlock-12  [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-28      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-28   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-26       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-29      [[1, 256, 16, 16]]    [1, 256, 16, 16]       590,080    
 BatchNorm2D-29   [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
    ReLU-27       [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
ResidualBlock-13  [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
   Conv2D-31      [[1, 256, 16, 16]]     [1, 512, 8, 8]       1,180,160   
 BatchNorm2D-31    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
    ReLU-28        [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
   Conv2D-32       [[1, 512, 8, 8]]      [1, 512, 8, 8]       2,359,808   
 BatchNorm2D-32    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
   Conv2D-30      [[1, 256, 16, 16]]     [1, 512, 8, 8]        131,584    
 BatchNorm2D-30    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
    ReLU-29        [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
ResidualBlock-14  [[1, 256, 16, 16]]     [1, 512, 8, 8]           0       
   Conv2D-33       [[1, 512, 8, 8]]      [1, 512, 8, 8]       2,359,808   
 BatchNorm2D-33    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
    ReLU-30        [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
   Conv2D-34       [[1, 512, 8, 8]]      [1, 512, 8, 8]       2,359,808   
 BatchNorm2D-34    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
    ReLU-31        [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
ResidualBlock-15   [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
   Conv2D-35       [[1, 512, 8, 8]]      [1, 512, 8, 8]       2,359,808   
 BatchNorm2D-35    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
    ReLU-32        [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
   Conv2D-36       [[1, 512, 8, 8]]      [1, 512, 8, 8]       2,359,808   
 BatchNorm2D-36    [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
    ReLU-33        [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
ResidualBlock-16   [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
  AvgPool2D-1      [[1, 512, 8, 8]]      [1, 512, 2, 2]           0       
    Linear-1         [[1, 2048]]             [1, 2]             4,098     
============================================================================
Total params: 21,314,306
Trainable params: 21,280,258
Non-trainable params: 34,048
----------------------------------------------------------------------------
Input size (MB): 0.75
Forward/backward pass size (MB): 125.77
Params size (MB): 81.31
Estimated Total Size (MB): 207.82
----------------------------------------------------------------------------

{'total_params': 21314306, 'trainable_params': 21280258}
posted @ 2023-05-09 01:13  belhomme  阅读(24)  评论(0编辑  收藏  举报