BZOJ 1043: [HAOI2008]下落的圆盘
Description
求几个圆交起来的周长..\(n\leqslant 10^3\)
Solution
计算几何.
圆圆求交..
Code
/************************************************************** Problem: 1043 User: BeiYu Language: C++ Result: Accepted Time:520 ms Memory:1308 kb ****************************************************************/ #include <bits/stdc++.h> using namespace std; namespace CG { typedef double LD; const LD Pi = M_PI; const LD PI = 2 * acos(0.0); const LD eps = 1e-12; #define sqr(x) ((x)*(x)) int dcmp(LD x) { return fabs(x)<eps?0:(x<0?-1:1); } struct Point { LD x,y; Point(LD _x=0,LD _y=0) :x(_x),y(_y) {} void out() { cout<<"("<<x<<","<<y<<")"; } }; typedef Point Vector; int cmpx(const Point &a,const Point &b) { return dcmp(a.x-b.x)==0?a.y<b.y:a.x<b.x; } Vector operator + (const Vector &a,const Vector &b) { return Vector(a.x+b.x,a.y+b.y); } Vector operator - (const Vector &a,const Vector &b) { return Vector(a.x-b.x,a.y-b.y); } Vector operator * (const Vector &a,LD b) { return Vector(a.x*b,a.y*b); } Vector operator / (const Vector &a,LD b) { return Vector(a.x/b,a.y/b); } bool operator == (const Point &a,const Point &b) { return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; } LD Dot(Vector a,Vector b) { return a.x*b.x+a.y*b.y; } LD Cross(Vector a,Vector b) { return a.x*b.y-b.x*a.y; } Vector Rot(Vector a,LD rd) { return Vector(a.x*cos(rd)-a.y*sin(rd),a.x*sin(rd)+a.y*cos(rd)); } LD get_l(Vector a) { return sqrt(Dot(a,a)); } LD get_d(Point a,Point b) { return sqrt(Dot(a-b,a-b)); } LD get_a(Vector a) { return atan2(a.y,a.x); } LD get_a(Vector a,Vector b) { return acos(Dot(a,b)/get_l(a)/get_l(b)); } LD get_s(Point a,Point b,Point c) { return Cross(b-a,c-a)/2.0; } struct Line { Point p; Vector v; Line(Point a=Point(),Point b=Point()):p(a),v(b-a) { } LD get_l() { return sqrt(Dot(v,v)); } Point get_p(LD t) { return p+v*t; } Point get_s() { return p; } Point get_t() { return p+v; } }; struct Circle { Point c; LD r; Point get_p(LD t) { return c+Point(cos(t)*r,sin(t)*r); } LD get_rd(Point a,Point b) { return get_a(a-c,b-c); } LD get_l(LD rd) { return r*rd; } }; int get_c_l(Line L,Circle C,vector<Point> &res) { LD a=L.v.x,b=L.p.x-C.c.x,c=L.v.y,d=L.p.y-C.c.y; LD e=sqr(a)+sqr(c),f=2.0*(a*b+c*d),g=sqr(b)+sqr(d)-sqr(C.r); LD dt=f*f-4*e*g; if(dcmp(dt)<0) return 0; if(dcmp(dt)==0) return res.push_back(L.get_p(-f/(2.0*e))),1; LD x1=(-f-sqrt(dt))/(2.0*e),x2=(-f+sqrt(dt))/(2.0*e); if(x1>x2) swap(x1,x2); res.push_back(L.get_p(x1)),res.push_back(L.get_p(x2));return 2; } int get_c_c(Circle A,Circle B,vector<Point> &res) { LD d=get_l(A.c-B.c); if(dcmp(d)==0) return dcmp(A.r-B.r)==0?-1:0; if(dcmp(A.r+B.r-d)<0) return 0; if(dcmp(fabs(A.r-B.r)-d)>0) return 0; LD a=get_a(B.c-A.c); LD rd=acos((sqr(A.r)+sqr(d)-sqr(B.r))/(2.0*A.r*d)); Point p1,p2; p1=A.get_p(a+rd),p2=A.get_p(a-rd); res.push_back(p1); if(p1==p2) return 1; res.push_back(p2); return 2; } /*---io---*/ ostream & operator << (ostream &os,const Point &p) { os<<p.x<<" "<<p.y;return os; } istream & operator >> (istream &is,Point &p) { is>>p.x>>p.y;return is; } ostream & operator << (ostream &os,const Circle &C) { os<<C.c<<" "<<C.r;return os; } istream & operator >> (istream &is,Circle &C) { is>>C.c>>C.r;return is; } }; using namespace CG; #define mpr make_pair int n; LD ans; vector<Circle> cr; vector<Line> cl; vector<Point> ls; vector<Point> cp; void add_l(vector<Point> &s,LD x,LD y) { if(x>y) s.push_back(Point(x,Pi)),s.push_back(Point(-Pi,y)); else ls.push_back(Point(x,y)); } int chk(Circle A,Circle B) { LD d=get_l(A.c-B.c); if(dcmp(B.r-A.r-d)>0) return 1; return 0; } LD get_ans(Circle c,int id) { ls.clear(); //O-O jiaodian for(int i=id+1;i<n;i++) { cp.clear(); if(chk(c,cr[i])) return 0; if(get_c_c(c,cr[i],cp)<2) continue; LD xx=get_a(cp[0]-c.c),yy=get_a(cp[1]-c.c); add_l(ls,yy,xx); } if(!ls.size()) return c.get_l(2*Pi); sort(ls.begin(),ls.end(),cmpx); // for(int i=0;i<(int)ls.size();i++) cout<<ls[i].x<<" "<<ls[i].y<<endl; LD lx=ls[0].x,ly=lx,res=0; for(int i=0;i<(int)ls.size();i++) { if(dcmp(ls[i].x-ly)>0) res+=ly-lx,lx=ls[i].x; ly=max(ly,ls[i].y); }res+=ly-lx; return c.get_l(2*Pi-res); } void Solve() { scanf("%d",&n); Circle cc; cr.clear(),ls.clear(),cp.clear(),ans=0; for(int i=1;i<=n;i++) { scanf("%lf%lf%lf",&cc.r,&cc.c.x,&cc.c.y); cr.push_back(cc); } for(int i=0;i<n;i++) { LD tmp=get_ans(cr[i],i); ans+=tmp; // cout<<tmp<<endl; }printf("%.3lf\n",ans); } int main() { Solve(); return 0; }