BZOJ 3270: 博物馆

Sol

期望DP+高斯消元.

根据本题题意列出期望方程
\[E(i,j)=(1-p_i)(1-p_j)E(u,v)+(1-p_i)p_jE(u,j)+p_i(1-p_j)E(i,v)+p_ip_jE(i,j),u\in Edge(i,u),v\in Edge(j,v)\]
移项得
\[(1-p_i)(1-p_j)E(u,v)+(1-p_i)p_jE(u,j)+p_i(1-p_j)E(i,v)+(p_ip_j-1)E(i,j)=0,u\in Edge(i,u),v\in Edge(j,v)\]

然后就可以高斯消元了,特殊的因为至少走一步所以关于 \(E(s,t)\) 的方程
\[(1-p_i)(1-p_j)E(u,v)+(1-p_i)p_jE(u,j)+p_i(1-p_j)E(i,v)+(p_ip_j-1)E(i,j)+1=0,u\in Edge(i,u),v\in Edge(j,v)\]

Code

/**************************************************************
    Problem: 3270
    User: BeiYu
    Language: C++
    Result: Accepted
    Time:376 ms
    Memory:3104 kb
****************************************************************/
 
#include<cstdio>
#include<cmath>
#include<iostream>
using namespace std;
#define H(i,j) (i*n+j)
inline int in(int x=0,char ch=getchar()){ while(ch>'9'||ch<'0') ch=getchar();
    while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; }
const int N = 22;
int n,m,s,t;bool b[N][N];
double p[N],a[N*N][N*N];int du[N];
void init(){
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            for(int u=0;u<n;u++) if(b[i][u])
                for(int v=0;v<n;v++) if(b[j][v]&&u!=v){
                    int h1=H(i,j),h2=H(u,v);
                    if(i==u&&j==v) a[h1][h2]+=p[u]*p[v];
                    else if(i==u) a[h1][h2]+=p[u]*(1-p[v])/du[v];
                    else if(j==v) a[h1][h2]+=(1-p[u])*p[v]/du[u];
                    else a[h1][h2]+=(1-p[u])*(1-p[v])/du[u]/du[v];
                }
    for(int i=0;i<n*n;i++) a[i][i]-=1;
}
 
void gauss(int n){
    for(int i=0,r,j,k;i<n;i++){
        for(r=i,j=i+1;j<n;j++) if(fabs(a[r][i])<fabs(a[j][i])) r=j;
        if(r!=i) for(j=0;j<=n;j++) swap(a[r][j],a[i][j]);
        for(j=i+1;j<n;j++){
            double bas=a[j][i]/a[i][i];
            for(k=i;k<=n;k++) a[j][k]-=bas*a[i][k];
        }
    }
    for(int i=n-1;~i;i--){
        for(int j=i+1;j<n;j++) a[i][n]-=a[j][n]*a[i][j];
        a[i][n]/=a[i][i];
    }
}
 
int main(){
    n=in(),m=in(),s=in()-1,t=in()-1;
    for(int i=1,u,v;i<=m;i++) u=in()-1,v=in()-1,b[u][v]=b[v][u]=1,du[u]++,du[v]++;
    for(int i=0;i<n;i++) scanf("%lf",&p[i]),b[i][i]=1;
    a[H(s,t)][n*n]=-1;init();
//  for(int i=0;i<n*n;i++)
//      for(int j=0;j<=n*n;j++)
//          printf("%.6lf%c",a[i][j]," \n"[j==n*n]);
//  putchar('\n');
    gauss(n*n);
//  for(int i=0;i<n*n;i++)
//      for(int j=0;j<=n*n;j++)
//          printf("%.6lf%c",a[i][j]," \n"[j==n*n]);
//  putchar('\n');
    for(int i=0;i<n;i++) printf("%.6lf ",a[H(i,i)][n*n]);
    return 0;
}

  

posted @ 2016-09-11 20:50  北北北北屿  阅读(225)  评论(0编辑  收藏  举报