BZOJ 1041: [HAOI2008]圆上的整点
Sol
数学.
\(x^2+y^2=r^2\)
\(y^2=r^2-x^2\)
\(y^2=(r-x)(r+x)\)
令 \(d=(r-x,r+x)\)
\(r-x=du^2,r+x=dv^2\)
\(2r=d(u^2+v^2),(v,u)==1\)
\(y^2=d^2u^2v^2\)
然后枚举 \(d\) 再枚举 \(u\)
Code
/************************************************************** Problem: 1041 User: BeiYu Language: C++ Result: Accepted Time:80 ms Memory:1300 kb ****************************************************************/ #include<cstdio> #include<cmath> #include<algorithm> #include<iostream> using namespace std; typedef long long LL; LL r,n,ans; inline LL in(LL x=0,char ch=getchar()){ while(ch>'9'||ch<'0') ch=getchar(); while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; } LL calc(LL d){ LL res=0,m=n/d; for(LL u=1,v;2*u*u<=m;u++){ v=sqrt(m-u*u)+0.5; if(v<=u) break; if(v*v+u*u==m&&__gcd(u,v)==1) res++; }return res; } int main(){ // freopen("in.in","r",stdin); r=in(),n=r<<1; for(LL d=1;d*d<=n;d++) if(n%d==0){ if(d*d==n) ans+=calc(d); else ans+=calc(d)+calc(n/d); } cout<<ans*4+4<<endl; return 0; }