fence repair

1,这题它自己都觉得奇特。。

2,咱也不急的看懂一步步来。

#include<iostream>
using namespace std;
const int maxn=1005;
int n;
int a[maxn];
int main(){
    cin>>n;
    for(int i=0;i<n;i++) cin>>a[i];
    long long ans=0;
    while(n>1)
    {
        int min1=0,min2=1;
        if(a[min1]>a[min2]) swap(min1,min2);
        
        for(int i=2;i<n;i++)
        {
            if(a[i]<a[min1])
            {
                min2=min1;
                min1=i;
            }
            else if(a[i]<a[min2])
            {
                min2=i;
            }
        }
        int t=a[min1]+a[min2];
        ans+=t;
        
        if(min1==n-1) swap(min1,min2);
        a[min1]=t; 
        a[min2]=a[n-1];
        n--;
    }
    cout<<ans<<endl;
    
    
} 

4,有点奇怪有点不懂,感觉也没有排序。

5,放心很快就费大费小了。

我不怎么能想出来并想清楚。因为自由切割让你挺难受。但是你可以借鉴二叉树的思维。我们把它分来分去,我们发现了一些可贵的品质,比如叶子的深度×叶子代表的数,之后我们发现如果我们想要到达一个最小花销的情况我们必须,嗯,最短的板和次短的板是兄弟节点。

嗯发现了这个性质之后那就好办了,我们找出最短和次短的板,当成最后一次的切,切出了它们,那么我们把它合并上去,同理递推地进行这个操作。

费大,一是建模型,二是类比那是这个啥。。。

确实有贪心,即单一维度下的评测。这个的单一维度就是最短的板

但是切这个确实有二分性。二分性和二叉树呵呵。

这个还是建立模型吧,其实也可以反向思考,给你一些分开的木板,要全部弄到一块,但是你每次只能连两个木板。并且每次连两个木板的代价是这个两个木板长度之和。然后每次就连最短的和次短的行不。对的

这个是不是可以写个证明什么的。想起了合并果子哈哈哈哈啊。这个可以记一下。。。至于类比???

至于代码细节,那你得手推。但是这个样例比较简单。。分析不出来啥。。

#include<iostream>
using namespace std;
int n,a[1005];
long long ans=0;
int main(){
    cin>>n;
    for(int i=0;i<n;i++) cin>>a[i];
    while(n>1)
    //为什么要n>1好好考虑了嘛? ,这个就是那个递归嘛 
    {
        int min1=0,min2=1;
        if(a[min1]>a[min2]) swap(min1,min2);
        
        for(int i=2;i<n;i++)
        {
            if(a[i]<a[min1])
            {
                min2=min1;
                min1=i;
            }
            else if(a[i]<a[min2])
            {
                min2=i;
            }
        }
        int t=a[min1]+a[min2];
        ans+=t;
        
        if(min1==n-1) swap(min1,min2);//也就是的意思是这次找最小的话
        //刚好是最后一个,因为下面是先把t的值赋给a[min],要是这样的话,a[n-1]就没东西了
        //所以选择这样的。但我觉得有点牵强。
        //不是说这个,而是整个代码宏观上的 
        //只差这一个了 
        a[min1]=t;
        a[min2]=a[n-1];
        n--;
        //靠终于懂了n-1是因为上面把a[min2]=a[n-1] 
     } 
     cout<<ans<<endl;
}
 

10,再 就是改变后的了,

sort排序默认是从小到大的。

#include<iostream>
#include<algorithm>
using namespace std;
int n,a[1000005];
long long ans=0;
int main(){
    cin>>n;
    for(int i=0;i<n;i++) cin>>a[i];
    while(n>1)
    {
        sort(a,a+n);
        int min1=0;
        int min2=1; 
        int t=a[min1]+a[min2];
        ans+=t;
        a[min1]=t;
        a[min2]=a[n-1];
        n--;
     } 
     cout<<ans<<endl;
}
 

唯一的缺点是过不了大数据

因为你用的是sort.

posted @ 2020-01-01 15:39  北月真好  阅读(115)  评论(0编辑  收藏  举报