摘要: 数据倾斜 在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显。主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低。 阅读全文
posted @ 2018-11-29 15:00 BoomOoO 阅读(175) 评论(0) 推荐(0) 编辑
摘要: 数据倾斜是进行大数据计算时最经常遇到的问题之一。当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题。数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算 阅读全文
posted @ 2018-11-29 14:59 BoomOoO 阅读(223) 评论(0) 推荐(0) 编辑