329. Longest Increasing Path in a Matrix

Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]

Return 4
The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]

Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

第一种方法,递归。很明显,时间超时,通不过。

 1 class Solution {
 2     public int longestIncreasingPath(int[][] matrix) {
 3         if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return 0;
 4         int max = 0;
 5         boolean[][] visited = new boolean[matrix.length][matrix[0].length];
 6         for (int i = 0; i < matrix.length; i++) {
 7             for (int j = 0; j < matrix[0].length; j++) {
 8                 max = Math.max(max, helper(matrix, visited, i, j));
 9             }
10         }
11         return max;
12     }
13 
14     public int helper(int[][] A, boolean[][] visited, int i, int j) {
15         visited[i][j] = true;
16         int[][] neighbors = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}};
17         int max = 0;
18         for (int[] neighbor : neighbors) {
19             int row = i + neighbor[0];
20             int col = j + neighbor[1];
21             if (row >= 0 && row < A.length && col >= 0 && col < A[0].length && !visited[row][col] && A[row][col] > A[i][j]) {
22                 max = Math.max(max, helper(A, visited, row, col));
23             }
24         }
25         visited[i][j] = false;
26         return max + 1;
27     }
28 }

第二种方法类似第一种方法,但是我们不会每次都对同一个位置重复计算。对于一个点来讲,它的最长路径是由它周围的点决定的,你可能会认为,它周围的点也是由当前点决定的,这样就会陷入一个死循环的怪圈。其实并没有,因为我们这里有一个条件是路径上的值是递增的,所以我们一定能够找到一个点,它不比周围的值大,这样的话,整个问题就可以解决了。

 1 public class Solution {
 2     public int longestIncreasingPath(int[][] A) {
 3         int res = 0;
 4         if (A == null || A.length == 0 || A[0].length == 0) {
 5             return res;
 6         }
 7         int[][] store = new int[A.length][A[0].length];
 8         for (int i = 0; i < A.length; i++) {
 9             for (int j = 0; j < A[0].length; j++) {
10                 if (store[i][j] == 0) {
11                     res = Math.max(res, dfs(A, store, i, j));
12                 }
13             }
14         }
15         return res;
16     }
17 
18     private int dfs(int[][] A, int[][] store, int i, int j) {
19         if (store[i][j] != 0) return store[i][j];
20         int max = 0;
21         int[][] neighbors = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}};
22         for (int[] neighbor : neighbors) {
23             int row = i + neighbor[0];
24             int col = j + neighbor[1];
25             if (row >= 0 && row < A.length && col >= 0 && col < A[0].length && A[row][col] > A[i][j]) {
26                 max = Math.max(max, dfs(A, store, row, col));
27             }
28         }
29         store[i][j] = max + 1;
30         return store[i][j];
31     }
32 }

 

posted @ 2016-10-29 06:27  北叶青藤  阅读(238)  评论(0编辑  收藏  举报