1031. Maximum Sum of Two Non-Overlapping Subarrays
Given an array A
of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L
and M
. (For clarification, the L
-length subarray could occur before or after the M
-length subarray.)
Formally, return the largest V
for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
and either:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, or0 <= j < j + M - 1 < i < i + L - 1 < A.length
.
Example 1:
Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
Output: 20
Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
Output: 29
Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
分析:
https://xingxingpark.com/Leetcode-1031-Maximum-Sum-of-Two-Non-Overlapping-Subarrays/
动态规划
凡是要求数组某一段的和,要想到用pre_sum,pre_sum[i]表示指数i之前左右数的和。 这样我们要求A[i]到A[j]之间所有数的和,
就可以用pre_sum[j] - pre_sum[i - 1] 回到这道题,我们第一遍遍历数组A求pre_sum。 第二遍遍历,指数为i,
用max_L记录指数i - M之前的最大连续L个数之和, 每次更新
max_L为max(max_L, pre_sum[i - M] - pre_sum[i - L - M]) max_L + pre_sum[i] - pre_sum[i - M]
表示以i结尾最后连续M个数,与之前最大的连续L个数的和。 同理max_M + pre_sum[i] - pre_sum[i - L]
就表示以i结尾最后连续L个数,与之前最大的连续M个数的和。 取其中较大的与最终要返回的值res比较,并更新即可。
1 class Solution { 2 public int maxSumTwoNoOverlap(int[] A, int L, int M) { 3 for (int i = 1; i < A.length; ++i) { 4 A[i] += A[i - 1]; 5 } 6 int res = A[L + M - 1], max_L = A[L - 1], max_M = A[M - 1]; 7 for (int i = L + M; i < A.length; ++i) { 8 max_L = Math.max(max_L, A[i - M] - A[i - L - M]); 9 max_M = Math.max(max_M, A[i - L] - A[i - L - M]); 10 res = Math.max(res, Math.max(max_L + A[i] - A[i - M], max_M + A[i] - A[i - L])); 11 } 12 return res; 13 } 14 }