Consecutive Numbers Sum
Given a positive integer N
, how many ways can we write it as a sum of consecutive positive integers?
Example 1:
Input: 5 Output: 2 Explanation: 5 = 5 = 2 + 3
Example 2:
Input: 9 Output: 3 Explanation: 9 = 9 = 4 + 5 = 2 + 3 + 4
Example 3:
Input: 15 Output: 4 Explanation: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
分析:https://leetcode.com/problems/consecutive-numbers-sum/discuss/209317/topic
这道题的要求的另一种说法: 把N表示成一个等差数列(公差为1)的和
我们不妨设这个数列的首项是x,项数为m,则这个数列的和就是[x + (x + (m-1))]m / 2 = mx + m(m-1)/2 = N
接下来,一个很自然的想法就是,枚举m,通过上式判断对于相应的m是否存在合法的x。
x = ((N - m(m-1)/2)) / m
显然枚举的复杂度是O(sqrt(N))。因为m能取到的最大值显然是sqrt(n)数量级的
1 class Solution { 2 int consecutiveNumbersSum(int N) { 3 int ans = 0; 4 for (int m = 1; ; m++) { 5 int mx = N - m * (m-1) / 2; 6 if (mx <= 0) 7 break; 8 if (mx % m == 0) 9 ans++; 10 } 11 return ans; 12 } 13 }