非学习型单层感知机的java实现(日志三)

要求如下:

    

Image(16)

 

       

            所以当神经元输出函数选择在硬极函数的时候,如果想分成上面的四个类型,则必须要2个神经元,其实至于所有的分类问题,n个神经元则可以分成2的n次方类型。

 

又前一节所证明出来的关系有:

Image(17)

     从而算出了所有的权重的值。。

  

代码实现如下:

   

      第一个类是用来操实际操作的类,真正核心的内容是在PerceptronClassifyNoLearn中。

package com.cgrj.com;

import java.util.Arrays;

import org.neuroph.core.data.DataSet;
import org.neuroph.core.data.DataSetRow;
import org.neuroph.nnet.Perceptron;

public class MyNeturol {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        DataSet trainingSet=new DataSet(2,2);
        trainingSet.addRow(new DataSetRow(new double[]{1,2},new double[]{Double.NaN,Double.NaN}));
        trainingSet.addRow(new DataSetRow(new double[]{1,1},new double[]{Double.NaN,Double.NaN}));
        trainingSet.addRow(new DataSetRow(new double[]{2,0},new double[]{Double.NaN,Double.NaN}));
        trainingSet.addRow(new DataSetRow(new double[]{2,-1},new double[]{Double.NaN,Double.NaN}));
        trainingSet.addRow(new DataSetRow(new double[]{-1,2},new double[]{Double.NaN,Double.NaN}));
        trainingSet.addRow(new DataSetRow(new double[]{-2,1},new double[]{Double.NaN,Double.NaN}));
        trainingSet.addRow(new DataSetRow(new double[]{-1,-1},new double[]{Double.NaN,Double.NaN}));
        trainingSet.addRow(new DataSetRow(new double[]{-2,-2},new double[]{Double.NaN,Double.NaN}));
        
        PerceptronClassifyNoLearn perceptronClassifyNoLearn=new PerceptronClassifyNoLearn(2);
    
        for(DataSetRow row:trainingSet.getRows()){
            perceptronClassifyNoLearn.setInput(row.getInput());
            perceptronClassifyNoLearn.calculate();
            double[] netWorkOutput=perceptronClassifyNoLearn.getOutput();
            System.out.println(Arrays.toString(row.getInput())+"="+Arrays.toString(netWorkOutput));
            
        }
        
        
        
    }

}

 

     PerceptronClassifyNoLearn规定了输入层和输出层的属性和规则,由于是无法学的,所以其判定规则是依然设定好了的,在此类中。

    

package com.cgrj.com;

import org.neuroph.core.Layer;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.core.Neuron;
import org.neuroph.nnet.comp.neuron.BiasNeuron;
import org.neuroph.nnet.comp.neuron.InputNeuron;
import org.neuroph.util.ConnectionFactory;
import org.neuroph.util.LayerFactory;
import org.neuroph.util.NeuralNetworkFactory;
import org.neuroph.util.NeuralNetworkType;
import org.neuroph.util.NeuronProperties;
import org.neuroph.util.TransferFunctionType;

public class PerceptronClassifyNoLearn extends NeuralNetwork {
    
      
        public PerceptronClassifyNoLearn(int inputNeuronsCount){
            this.createNetWork(inputNeuronsCount);
            
        }

        private void createNetWork(int inputNeuronsCount) {
            //设置网络感知机
            this.setNetworkType(NeuralNetworkType.PERCEPTRON);
            
            //构建输入神经元,表示输入的刺激
            NeuronProperties inputNeuronProperties=new NeuronProperties();
            inputNeuronProperties.setProperty("neuronType", InputNeuron.class);
            
            //由输入神经元构成的输入层
            Layer inputLayer=LayerFactory.createLayer(inputNeuronsCount,inputNeuronProperties);
            this.addLayer(inputLayer);
            //给输入层增加BiasNeron,表示神经元偏置
            inputLayer.addNeuron(new BiasNeuron());
            
            //构建输出神经元
            NeuronProperties outputNeuronProperties=new NeuronProperties();
            outputNeuronProperties.setProperty("transferFunction", TransferFunctionType.STEP);
            Layer outputLayer=LayerFactory.createLayer(2, outputNeuronProperties);
            this.addLayer(outputLayer);
            
            ConnectionFactory.fullConnect(inputLayer, outputLayer);
            NeuralNetworkFactory.setDefaultIO(this);
            Neuron n=outputLayer.getNeuronAt(0);
            n.getInputConnections()[0].getWeight().setValue(-3);
            n.getInputConnections()[1].getWeight().setValue(-1);
            n.getInputConnections()[2].getWeight().setValue(1);
            
            
            n=outputLayer.getNeuronAt(1);
            n.getInputConnections()[0].getWeight().setValue(1);
            n.getInputConnections()[1].getWeight().setValue(-2);
            n.getInputConnections()[2].getWeight().setValue(0);
            
                           
            
        }
}

 

   可以应用于象限的判定,修改上面的代码如下:

           

Neuron n=outputLayer.getNeuronAt(0);
            n.getInputConnections()[0].getWeight().setValue(0);
            n.getInputConnections()[1].getWeight().setValue(1);
            n.getInputConnections()[2].getWeight().setValue(0);
            
            
            n=outputLayer.getNeuronAt(1);
            n.getInputConnections()[0].getWeight().setValue(1);
            n.getInputConnections()[1].getWeight().setValue(0);
            n.getInputConnections()[2].getWeight().setValue(0);

 

       则有第一个用来判定位于y的方向,第一个神经元则用来判定位于x轴的方向

 

     

switch (Arrays.toString(netWorkOutput)) {
            case "[1.0, 1.0]":
                str="第一象限";
                break;
            case "[0.0, 1.0]":
                str="第四象限";
                break;
            case "[1.0, 0.0]":
                str="第二象限";
                break;
            case "[0.0, 0.0]":
                str="第三象限";
                break;

            default:
                break;
            }
            
            System.out.println(Arrays.toString(row.getInput())+"="+Arrays.toString(netWorkOutput)+"---属于"+str);

 

      这样就会有打印的结果了。。

 

     运行截图(这里忽略坐标轴的影响,由于输出函数的特殊,所以把0当成负数看):

 

       

 

       下一篇,将具体分析每个类和每个方法的含义,及其实现的原理。。。

      

   

 

posted @ 2016-05-05 15:26  北宫风晨  阅读(852)  评论(1编辑  收藏  举报