0-1规划,背包问题
动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。
比如01背包问题。
/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,
它们的重量分别是W1,W2,...,Wn,
它们的价值分别为P1,P2,...,Pn.
若每种物品只有一件求旅行者能获得最大总价值。
输入格式:
M,N
W1,P1
W2,P2
......
输出格式:
X
*/
因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。
测试数据:
10,3
3,4
4,5
5,6
c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.
这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)
从以上最大价值的构造过程中可以看出。
f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?
下面是实际程序(在VC 6.0环境下通过):
#include<stdio.h>
int c[10][100];/*对应每种情况的最大价值*/
int knapsack(int m,int n)
{
int i,j,w[10],p[10];
printf("请输入每个物品的重量,价值:\n");
for(i=1;i<=n;i++)
scanf("%d,%d",&w[i],&p[i]);
for(i=0;i<10;i++)
for(j=0;j<100;j++)
c[i][j]=0;/*初始化数组*/
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
if(w[i]<=j) /*如果当前物品的容量小于背包容量*/
{
if(p[i]+c[i-1][j-w[i]]>c[i-1][j])
/*如果本物品的价值加上背包剩下的空间能放的物品的价值*/
/*大于上一次选择的最佳方案则更新c[i][j]*/
c[i][j]=p[i]+c[i-1][j-w[i]];
else
c[i][j]=c[i-1][j];
}
else c[i][j]=c[i-1][j];
}
return(c[n][m]);
}
int main()
{
int m,n;int i,j;
printf("请输入背包的承重量,物品的总个数:\n");
scanf("%d,%d",&m,&n);
printf("旅行者背包能装的最大总价值为%d",knapsack(m,n));
printf("\n");
return 0;
}
C++语言
#include<iostream>
using namespace std;
int main()
{
int m,n;int i,j;
int c[10][100];/*对应每种情况的最大价值*/
int w[10],p[10];
cin>>m>>n;
for(i=1;i<=n;i++)
cin>>w[i]>>p[i];
for(i=0;i<10;i++)
for(j=0;j<100;j++)
c[i][j]=0;/*初始化数组*/
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
if(w[i]<=j)
c[i][j]=c[i-1][j]>(p[i]+c[i-1][j-w[i]])?c[i-1][j]:(p[i]+c[i-1][j-w[i]]);
}
cout<<c[n][m]<<endl;
return 0;
}