Begtostudy(白途思)'s Professional Technology Blog

欢迎访问begtostudy的专业知识博客!主要是专业技术和算法为主。
随笔 - 564, 文章 - 2, 评论 - 74, 阅读 - 103万
  首页  :: 联系 :: 订阅 订阅  :: 管理
< 2025年1月 >
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
2 3 4 5 6 7 8

第一章 矢量与坐标 §1 矢量的基本概念

Posted on   白途思  阅读(1063)  评论(0编辑  收藏  举报

第一章 矢量与坐标

 

本章教学目的:通过本章学习,使学生掌握矢量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用矢量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础。

本章教学重点:(1)矢量的基本概念和矢量间关系的各种刻划;

(2)矢量的线性运算、积运算的定义、运算规律及分量表示。

本章教学难点:(1)矢量及其运算与空间坐标系的联系;

(2)矢量的数量积与矢量积的区别与联系;

(3)矢量及其运算在平面、立体几何中的应用。

本章教学内容

 

 

§1 矢量的基本概念

  1. 定义既有大小又有方向的量称为矢量,如力、速度、位移等。
  2. 表示在几何上,用带箭头的线条表示矢量,箭头表示矢量的方向,线条长度代表矢量的大小;矢量的大小又叫矢量的摸(长度)。

    始点为A,终点为B的矢量,记作,其摸记做

    :为方便起见,今后除少数情形用矢量的始、终点字母标记矢量外,我们一般用小写黑体字母a、b、c……标记矢量,而用希腊字母λ、μ、ν……标记数量。

     

三、两种特殊矢量

  1. 零矢量:模等于0的矢量为零矢量,简称零矢,以0记之。

注:零矢量是唯一方向不定的矢量。

 

2、位矢量:模等于1的矢量称为单位矢量,简称单位矢。特别地,与非0矢量同向的单位矢称为的单位矢,记作

 

四、矢量间的几种特殊关系:

1、平行(共线):矢量a平行于矢量b,意即a所在直线平行于b所在直线,记作ab,规定:零矢量平行于任何矢量,

2、相等:矢量a等于矢量b,意即 ,记作a=b

规定:所有零矢均相等。

注:二矢量相等与否,仅取决于它们的模与方向,而与其位置无关,这种与位置无关的矢量称为自由矢量。

3、反矢量:与矢量模相等但方向相反的矢量称为的反矢量,记作,显然

,零矢量的反矢量还是其自身。

4、共面矢量:平行于同一平面的一组矢量称为共面矢量,易见,任两个矢量总是共面的,零矢量与任何共面矢量组共面。

:应把矢量与数量严格区别开来:

①矢量不能比较大小,如没有意义;

②矢量严禁除法运算,如此类式子不允许出现。

努力加载评论中...
前往Begtostudy的编程知识博客(CSDN)
点击右上角即可分享
微信分享提示