Begtostudy(白途思)'s Professional Technology Blog

欢迎访问begtostudy的专业知识博客!主要是专业技术和算法为主。
  首页  :: 联系 :: 订阅 订阅  :: 管理

5§2 二次曲线的渐近方向、中心和渐近线

Posted on 2010-09-04 14:59  白途思  阅读(3536)  评论(0编辑  收藏  举报

§2 二次曲线的渐近方向、中心和渐近线

渐近方向:

定义:若一方向X:Y(即与矢量{X,Y}平行的方向)满足Φ(X,Y)=0,则称其为二次

曲线F(x,y)=0的一渐近方向

存在性:

命题:任一二次曲线至多有二渐近方向,具体地

(i)当=>0时,曲线有二共轭复渐近方向;

(ii)当<0时,曲线有二不同实渐近方向;

(iii)当=0时,曲线有二相同实渐近方向。

事实上,X:Y为渐近方向〈═〉Φ(X,Y)=0〈═〉X²+2XY+Y²=0

〈═〉X:Y=(-±):

可见,对椭圆 , ∵==>0

∴它有二共轭复渐近方向;对双曲线=-<0,

∴它有二不同实渐近方向;对抛物线y²=2px,==0

∴它有二相同的实渐近方向;由此,称仅有复渐近方向的二次曲线为椭圆型曲线;有二不同实渐近方向的二次曲线为双曲线型曲线;有二相同实渐近方向的二次曲线为抛物型曲线。

中心

1、定义:二次曲线上任意两点间的连接线段,若不沿渐近方向,则称其为。若存在一点C,使得过C的任一弦均被C平分,则称C为二次曲线的中心

显然:二次曲线的中心正是它的对成中心。

2、求法

定理1:点C()是二次曲线F(x,y)=0之中心〈═〉是方程组

(*) 的解

证:"═〉"设C()是中心,而是过C的任一弦,该弦所在直线

l: , Φ(X,Y)≠0

+X ,+Y),i=1,2,则是方程

Φ(X,Y)t²+2[)X+)Y]t+F()=0的根

=

=++=0

)X+)Y=0,由弦的任意性

)=)=0

"〈═"若C()的坐标满足)=)=0 过C任取曲线的弦,其方向为X:Y,从而若令+tX,+tY),i=1,2,则应是(*)二个根。

)X+)Y=0 ∴+=0

的中点坐标为

    

即C()是弦的中点 ∴C为中心

:若一条二次曲线有唯一中心,则称其为中心二次曲线;没有中心的二次曲线称为无心二次曲线;有不止一个中心的二次曲线称为线性二次曲线,

关于上述三种二次曲线的判别标准,我们有

定理2

(i)二次曲线为中心二次曲线 〈═〉≠0

(ii)二次曲线为无心二次曲线 〈═〉=0,但

(iii)二次曲线为线性二次曲线 〈═〉=0且=

事实上,(i)二次曲线为中心二次曲线〈═〉(*)有唯一解〈═〉≠0

(ii)二次曲线为无心二次曲线〈═〉(*)无解〈═〉

≠秩〈═〉

=0但≠0〈═〉=0且

(vi)二次曲线为线性二次曲线〈═〉(*)有不止一个解〈═〉I2=0且

=

注:对线性二次曲线,由于== ∴方程组(*)同解于(x,y)≡x+y+=0 即线性二次曲线的中心充满直线

x²+y+=0——中心直线

渐近线

定义:过二次曲线的中心且沿其渐近方向的直线称为渐近线

可见:椭圆型二次曲线有二共轭复渐近线;双曲型二次曲线有二不同实渐近线;而对抛物型二次曲线,若其为无心的,则其没有渐近先,若其为线性的,则由于其渐近方向为X:Y=-,而这正是中心直线的方向,∴它的渐近线即为中心直线。

求法

法1:求出中心,再求出渐近方向即可得到渐近线的参数方程。

法2:求出中心C(),对渐近线上任一点M(x,y),则(x-):(y-)为渐近方向, ∴Φ(x-,y-)=0

性质

命题:二次曲线的渐近线或者与曲线不交,或者整个位于曲线上,事实上,设

l:为渐近线,其中()为中心,X:Y为渐近方向

∴Φ(X,Y)=0且)=)=0,∴若F()≠0,

则l与曲线不变,若F()=0,则l整个在曲线上。

前往Begtostudy的编程知识博客(CSDN)