Begtostudy(白途思)'s Professional Technology Blog

欢迎访问begtostudy的专业知识博客!主要是专业技术和算法为主。
  首页  :: 联系 :: 订阅 订阅  :: 管理

3§7 直线与平面的位置关系

Posted on 2010-09-04 13:42  白途思  阅读(409)  评论(0编辑  收藏  举报

§7 直线与平面的位置关系

 

各种位置关系的解析条件

设直线L: 与平面π:Ax+By+Cz+D=0

则 L与π相交〈═〉,)=Lπ〈═〉唯一的,使

A(+X)+B(+Y)+C(+Z)=0〈═〉AX+BY+CZ≠0

∴有 L与π相交〈═〉AX+BY+CZ≠0;

L∥π〈═〉不存在唯一的t使(+tX)+B(+tY)+C(+tZ)+D=0

〈═〉AX+BY+CZ=0

L在π上〈═〉存在无穷多个t使A(+tX)+B(+tY)+C(+tZ)+D=0

〈═〉AX+BY+CZ=A+B+C+D=0

推论:L∥π但L不在π上〈═〉AX+BY+CZ=0,但A+B+C≠0

 

直线与平面的交角:

设在直角系下,直线L与平面π的方程如上,则V{X,Y,Z}和n{A,B,C}分别是l的方向矢及π的法线矢,如图

(图3.6)

令∠(L,π)=,∠(v,n)=θ 则

    =θ或 =θ-(θ为锐角)

∴ sin=±cosθ=∣cosθ∣==

:求过点(-1,2,-3),平行于平面6x-2y-3z+1=0且与直线相交的直线的方程。

:略。

 

 

前往Begtostudy的编程知识博客(CSDN)