TCP协议之三次握手&四次挥手
TCP 的特性
TCP 提供一种面向连接的、可靠的字节流服务
在一个 TCP 连接中,仅有两方进行彼此通信。广播和多播不能用于 TCP
TCP 使用校验和,确认和重传机制来保证可靠传输
TCP 给数据分节进行排序,并使用累积确认保证数据的顺序不变和非重复
TCP 使用滑动窗口机制来实现流量控制,通过动态改变窗口的大小进行拥塞控制
注意:TCP 并不能保证数据一定会被对方接收到,因为这是不可能的。TCP 能够做到的是,如果有可能,就把数据递送到接收方,否则就(通过放弃重传并且中断连接这一手段)通知用户。因此准确说 TCP 也不是 100% 可靠的协议,它所能提供的是数据的可靠递送或故障的可靠通知。
三次握手
三次握手(Three-way Handshake),是指建立一个 TCP 连接时,需要客户端和服务器总共发送3个包。
目的是连接服务器指定端口,建立 TCP 连接,并同步连接双方的序列号和确认号,交换 TCP 窗口大小信息。在 socket 编程中,客户端执行 connect() 时,将触发三次握手。
1)第一次握手(SYN=1, seq=x):
客户端发送一个 TCP 的 SYN 标志位置1的包,指明客户端打算连接的服务器的端口,以及初始序号 X,保存在包头的序列号(Sequence Number)字段里。
发送完毕后,客户端进入 SYN_SEND 状态。
2)第二次握手(SYN=1, ACK=1, seq=y, ACKnum=x+1):
服务器发回确认包(ACK)应答。即 SYN 标志位和 ACK 标志位均为1。服务器端选择自己 ISN 序列号,放到 Seq 域里,同时将确认序号(Acknowledgement Number)设置为客户的 ISN 加1,即X+1。 发送完毕后,服务器端进入 SYN_RCVD 状态。
3)第三次握手(ACK=1,ACKnum=y+1)
客户端再次发送确认包(ACK),SYN 标志位为0,ACK 标志位为1,并且把服务器发来 ACK 的序号字段+1,放在确定字段中发送给对方,并且在数据段放写ISN的+1
发送完毕后,客户端进入 ESTABLISHED 状态,当服务器端接收到这个包时,也进入 ESTABLISHED 状态,TCP 握手结束。
Q&A
1、为什么是三次握手而不是两次?
根本原因: 无法确认客户端的接收能力。
如果是两次,你现在发了 SYN 报文想握手,但是这个包滞留在了当前的网络中迟迟没有到达,TCP 以为这是丢了包,于是重传,两次握手建立好了连接。
看似没有问题,但是连接关闭后,如果这个滞留在网路中的包到达了服务端呢?这时候由于是两次握手,服务端只要接收到然后发送相应的数据包,就默认建立连接,但是现在客户端已经断开了。
看到问题的吧,这就带来了连接资源的浪费。
备注:
丢包的数据 服务器会根据时间戳或者根据响应时间 判定是否接受 这个请求/数据;
2、为什么不是四次?
三次握手的目的是确认双方发送和接收的能力,那四次握手可以嘛?
当然可以,100 次都可以。但为了解决问题,三次就足够了,再多用处就不大了。
3、三次握手过程中可以携带数据么?
第三次握手的时候,可以携带。前两次握手不能携带数据。
如果前两次握手能够携带数据,那么一旦有人想攻击服务器,那么只需要在第一次握手中的 SYN 报文中放大量数据,那么服务器势必会消耗更多的时间和内存空间去处理这些数据,增大了服务器被攻击的风险。
第三次握手的时候,客户端已经处于ESTABLISHED状态,并且已经能够确认服务器的接收、发送能力正常,这个时候相对安全了,可以携带数据。
4、同时打开会怎样?
如果双方同时发 SYN报文,状态变化会是怎样的呢?
这是一个可能会发生的情况,状态变迁如下:
在发送方给接收方发SYN报文的同时,接收方也给发送方发SYN报文,两个人刚上了!
发完SYN,两者的状态都变为SYN-SENT。
在各自收到对方的SYN后,两者状态都变为SYN-REVD。
接着会回复对应的ACK + SYN,这个报文在对方接收之后,两者状态一起变为ESTABLISHED。
这就是同时打开情况下的状态变迁。
四次握手
TCP 的连接的关闭需要发送四个包,因此称为四次挥手(Four-way handshake),也叫做改进的三次握手。客户端或服务器均可主动发起挥手动作,在 socket 编程中,任何一方执行 close() 操作即可产生挥手操作。
1)第一次挥手(FIN=1,seq=x)
假设客户端想要关闭连接,客户端发送一个 FIN 标志位置为1的包,表示自己已经没有数据可以发送了,但是仍然可以接受数据。
发送完毕后,客户端进入 FIN_WAIT_1 状态。
2)第二次挥手(ACK=1,ACKnum=x+1)
服务器端确认客户端的 FIN 包,发送一个确认包,表明自己接受到了客户端关闭连接的请求,但还没有准备好关闭连接。
发送完毕后,服务器端进入 CLOSE_WAIT 状态,客户端接收到这个确认包之后,进入 FIN_WAIT_2 状态,等待服务器端关闭连接。
3)第三次挥手(FIN=1,seq=y)
服务器端准备好关闭连接时,向客户端发送结束连接请求,FIN 置为1。
发送完毕后,服务器端进入 LAST_ACK 状态,等待来自客户端的最后一个ACK。
4)第四次挥手(ACK=1,ACKnum=y+1)
客户端接收到来自服务器端的关闭请求,发送一个确认包,并进入 TIME_WAIT状态,等待可能出现的要求重传的 ACK 包。
服务器端接收到这个确认包之后,关闭连接,进入 CLOSED 状态。
客户端等待了某个固定时间(两个最大报文段生命周期,2MSL,2 Maximum Segment Lifetime)之后,在这段时间内如果客户端没有收到服务端的重发请求(没有收到服务器端的 ACK ),那么表示 ACK 成功到达,于是自己也关闭连接,进入 CLOSED 状态,挥手结束;否则客户端重发 ACK。
Q&A
1、等待2MSL的意义,如果不等待会怎样?
如果不等待,客户端直接跑路,当服务端还有很多数据包要给客户端发,且还在路上的时候,若客户端的端口此时刚好被新的应用占用,那么就接收到了无用数据包,造成数据包混乱。所以,最保险的做法是等服务器发来的数据包都消亡再启动新的应用。
那照这样说一个 MSL 就够,为什么要等待 2 MSL(最长报文段存活时间)?
第1个 MSL 确保四次挥手中主动关闭方最后的 ACK 报文最终能达到对端
第2个 MSL 确保对端没有收到 ACK ,重传的 FIN 报文可以到达
这就是等待 2MSL 的意义:为了保证客户端发送的最后一个ACK报文段能够到达服务器;防止“已失效的连接请求报文段”出现在本连接中。
2、为什么是四次挥手,而不是三次?
由于TCP的半关闭(half-close)造成的,半关闭其实就是TCP提供了连接的一端在结束它的发送后还能接收来自另一端数据的能力。因为服务端在接收到FIN,往往不会立即返回FIN, 必须等到服务端所有的报文都发送完毕了,才能发FIN。因此先发一个ACK表示已经收到客户端的FIN,延迟一段时间才发FIN,这就造成了四次挥手。
3、如果是三次挥手会有什么问题?(即第二次和第三次合并)
等于说服务端将ACK和FIN的发送合并为一次挥手,这个时候长时间的延迟可能会导致客户端误以为FIN没有到达客户端,从而让客户端不断的重发FIN。 不断的进行数据包重发,从而影响了连接的可靠性和完整性。
4、如果第二次挥手时服务器的ACK报文没有送达客户端,会怎样?
由于客户端没有收到ACK报文,客户端会继续发送FIN报文给服务器。
5、同时关闭会怎样?
如果客户端和服务端同时发送 FIN ,状态会如何变化?如图所示:
6、说说半连接队列和 SYN Flood 攻击的关系
三次握手前,服务端的状态从CLOSED变为LISTEN, 同时在内部创建了两个队列:半连接队列和全连接队列,即SYN队列和ACCEPT队列。
半连接队列
当客户端发送SYN到服务端,服务端收到以后回复ACK和SYN,状态由LISTEN变为SYN_RCVD,此时这个连接就被推入了SYN队列,也就是半连接队列。
全连接队列
当客户端返回ACK, 服务端接收后,三次握手完成。这个时候连接等待被具体的应用取走,在被取走之前,它会被推入另外一个 TCP 维护的队列,也就是全连接队列(Accept Queue)。如果队列满了就有可能会出现丢包现象。
注意:
关于SYN-ACK 重传次数的问题:
服务器发送完SYN-ACK包,如果未收到客户确认包,服务器进行首次重传,等待一段时间仍未收到客户确认包,进行第二次重传。如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。每次重传等待的时间不一定相同,一般会是指数增长,例如间隔时间为 1s,2s,4s,8s…
SYN Flood 攻击原理
SYN Flood 属于典型的 DoS/DDoS 攻击。其攻击的原理很简单,就是用客户端在短时间内伪造大量不存在的 IP 地址,并向服务端疯狂发送SYN。对于服务端而言,会产生两个危险的后果:
1)处理大量的SYN包并返回对应ACK, 势必有大量连接处于SYN_RCVD状态,从而占满整个半连接队列,无法处理正常的请求。
2)由于是不存在的 IP,服务端长时间收不到客户端的ACK,会导致服务端不断重发数据,直到耗尽服务端的资源。
服务器端的资源分配是在二次握手时分配的,而客户端的资源是在完成三次握手时分配的,所以服务器容易受到SYN洪泛攻击。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server则回复确认包,并等待Client确认,由于源地址不存在,因此Server需要不断重发直至超时,这些伪造的SYN包将长时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络拥塞甚至系统瘫痪。SYN 攻击是一种典型的 DoS/DDoS 攻击。
检测 SYN 攻击非常方便,当在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击。
在 Linux/Unix 上可以使用系统自带的 netstat 命令来检测 SYN 攻击:
netstat -n -p TCP | grep SYN_RECV
7、如何应对 SYN Flood 攻击?
1)增加 SYN 连接,也就是增加半连接队列的容量。
2)减少 SYN + ACK 重试次数,避免大量的超时重发。
3)利用 SYN Cookie 技术,在服务端接收到SYN后不立即分配连接资源,而是根据这个SYN计算出一个Cookie,连同第二次握手回复给客户端,在客户端回复ACK的时候带上这个Cookie值,服务端验证 Cookie 合法之后才分配连接资源。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· DeepSeek 开源周回顾「GitHub 热点速览」