P1742 最小圆覆盖(计算几何)
体验过O(n3)过105吗?快来体验一波当wys的快感吧QAQ
前置芝士1:二元一次方程组求解
设
{a1∗x+b1∗y=c1a2∗x+b2∗y=c2
(其中a1,a2,b1,b2,c1,c2为已知量)
由②式得:
x=c2−b2∗ya2
带入①式并化简得:
y=c1−a1∗c2a2b1−a1∗b2a2
分子分母同时乘以a2得:
y=a2∗c1−a1∗c2a2∗b1−a1∗b2
同理可得(把a,b互换即可):
x=b2∗c1−b1∗c2b2∗a1−b1∗a2
前置芝士2:三点定圆
给出三个点,求出圆心&半径
{x12−2x1∗x0+x02+y12−2y1∗y0+y02=r2x22−2x2∗x0+x02+y22−2y2∗y0+y02=r2x32−2x3∗x0+x02+y32−2y3∗y0+y02=r2
②−①和③−①,并化简得:
{2∗(x2−x1)x+2∗(y2−y1)y=x22−x12+y22−y122∗(x3−x1)x+2∗(y3−y1)y=x32−x12+y32−y12
我们将三点定圆的柿子对应二元一次方程组中,可知:
a1=x2−x1,a2=x3−x1
b1=y2−y1,b2=y3−y1
c1=x22−x12+y22−y122,c2=x32−x12+y32−y122
然后就可以根据三个点求出圆心和半径了
正文
跟据前置芝士,我们知道对于任意三个不共线的点,我们可以求出三点定的圆,所以一个明显的想法就是枚举三个点
我们先枚举第一个点,有两种情况
①:当前点在当前外面,即dis(圆心,该点)>r那么我们不管这个点
②:不是情况①的情况,那么我们就需要重新构造这个圆来包含所有的点了
怎么构造呢?我们重新枚举两外两个已经遍历过的点,组成三个点。同理,若重新构造的圆包括了三个点,那么就不管,若有任意一个在圆外,那么我们根据前置芝士重新确定圆心和半径即可
PS:本题出题人过于duliu,故意构造数据卡掉了上述解法,所以我们需要一个神奇的东西:随(da)机(luan)增(shu)量(ju)法,来防止掉精度
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define D double
il int read()
{
re int x = 0, f = 1; re char c = getchar();
while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x * f;
}
#define rep(i, s, t) for(re int i = s; i <= t; ++ i)
#define eps 1e-12
#define maxn 100005
#define ff(x) (x) * (x)
int n, m;
D r;
struct node
{
D x, y;
}o, e[maxn];
il D dis(node a, node b){return sqrt(ff(a.x - b.x) + ff(a.y - b.y));}
il void get(node a, node b, node c)
{
D a1 = b.x - a.x, a2 = c.x - a.x, b1 = b.y - a.y, b2 = c.y - a.y;
D c1 = (ff(b.x) - ff(a.x) + ff(b.y) - ff(a.y));
D c2 = (ff(c.x) - ff(a.x) + ff(c.y) - ff(a.y));
o = (node){(b2 * c1 - b1 * c2) / (b2 * a1 * 2 - b1 * a2 * 2),
(a2 * c1 - a1 * c2) / (a2 * b1 * 2 - a1 * b2 * 2)};
r = dis(a, o);
}
il void work()
{
o = e[1], r = 0;
rep(i, 2, n)
{
if(dis(o, e[i]) > r + eps)
{
o = e[i], r = 0;
rep(j, 1, i - 1)
{
if(dis(o, e[j]) > r + eps)
{
o.x = (e[i].x + e[j].x) / 2, o.y = (e[i].y + e[j].y) / 2;
r = dis(o, e[j]);
rep(k, 1, j - 1) if(dis(o, e[k]) > r + eps) get(e[i], e[j], e[k]);
}
}
}
// printf("%.10lf\n%.10lf %.10lf\n", r, o.x, o.y);
}
}
int main()
n = read();
rep(i, 1, n) scanf("%lf%lf", &e[i].x, &e[i].y);
random_shuffle(e + 1, e + n + 1);
work();
printf("%.10lf\n%.10lf %.10lf", r, o.x, o.y);
return 0;
}
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· PostgreSQL 和 SQL Server 在统计信息维护中的关键差异
· C++代码改造为UTF-8编码问题的总结
· DeepSeek 解答了困扰我五年的技术问题
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 用 C# 插值字符串处理器写一个 sscanf
· [翻译] 为什么 Tracebit 用 C# 开发
· Deepseek官网太卡,教你白嫖阿里云的Deepseek-R1满血版
· DeepSeek崛起:程序员“饭碗”被抢,还是职业进化新起点?
· 2分钟学会 DeepSeek API,竟然比官方更好用!
· .NET 使用 DeepSeek R1 开发智能 AI 客户端