[置顶] bzoj3232: 圈地游戏 0-1分数规划

第一次接触到分数规划,没想到做题的时候难点不在这上头,反而在如何分数规划后,怎么用建立网络,我承认,做不来,建图是在网上剽窃的。

建图具体做法如下:

  首先在原矩阵周围再加上一圈,将原矩阵包围起来,对于加上的一圈,每个格子都想t连一条权值为正无穷的有向边,表示这些格子都不选,然后对于原矩阵每个格子,由s向它连一条权值为sorce[i][j]的有向边,然后对于没调分割线两边的格子,连一条权值为分割线的权值的无向边。

分数规划如下:

  二分答案,l=0,r=n*m*100;

  因为要找最大值,所以if f[mid]>0 l=mid; else r=mid;

  一定要注意精度啊,被坑死在这儿,不能直接像上面那样判断,要这样写:if f[mid]>1e-9 l=mid; else r=mid;

0-1分数规划如下:

定义:

01分数规划问题:所谓的01分数规划问题就是指这样的一类问题,给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每一个物品只有选或者不选两种方案,求一个选择方案使R=sigma(a[i]*x[i])/sigma(b[i]*x[i])取得最值,即所有选择物品的总收益/总代价的值最大或是最小。

01分数规划问题主要包含一般的01分数规划、 最优比率生成树问题、最优比率环问题等。我们将会对第一个问题进行讨论。

分析:

数学分析中一个很重要的方法就是分析目标式,这样我们来看目标式。

R=sigma(a[i]*x[i])/sigma(b[i]*x[i])

我们来分析一下他有什么性质可以给我们使用。

我们先定义一个函数F(L):=sigma(a[i]*x[i])-L*sigma(b[i]*x[i]),显然这只是对目标式的一个简单的变形。分离参数,得到F(L):=sigma((a[i]-L*b[i])*x[i])。这时我们就会发现,如果L已知的话,a[i]-L*b[i]就是已知的,当然x[i]是未知的。记d[i]=a[i]-L*b[i],那么F(L):=sigma(d[i]*x[i]),多么简洁的式子。我们就对这些东西下手了。

再次提醒一下,我们的目标是使R取到最大值。

我们来分析一下这个函数,它与目标式的关系非常的密切,L就是目标式中的R,最大化R也就是最大化L。

F的值是由两个变量共同决定的,即方案X和参数L。对于一个确定的参数L来说,方案的不同会导致对应的F值的不同,那么这些东西对我们有什么用呢?

假设我们已知在存在一个方案X使得F(L)>0,这能够证明什么?

F(L)=sigma(a[i]*x[i])-L*sigma(b[i]*x[i])>0即sigma(a[i]*x[i])/sigma(b[i]*x[i])>L也就是说,如果一个方案使得F(L)>0说明了这组方案可以得到一个比现在的L更优的一个L,既然有一个更优的解,那么为什么不用呢?

显然,d数组是随着L的增大而单调减的。也就是说,存在一个临界的L使得不存在一种方案,能够使F(L)>0. 我们猜想,这个时候的L就是我们要求的最优解。之后更大的L值则会造成无论任何一种方案,都会使F(L)<><>

 综上,函数F(L)有这样的一个性质:在前一段L中可以找到一组对应的X使得F(L)>0,这就提供了一种证据,即有一个比现在的L更优的解,而在某个L值使,存在一组解使得F(L)=0,且其他的F(L)<><><>

根据这样的一段性质,很自然的就可以想到二分L值,然后验证是否存在一组解使得F(L)>0,有就移动下界,没有就移动上界。

 所有的01分数规划都可以这么做,唯一的区别就在于求解时的不同——因为每一道题的限制条件不同,并不是每一个解都是可行解的。比如在普通的数组中,你可以选取1、2、3号元素,但在生成树问题中,假设1、2、3号元素恰好构成了一个环,那就不能够同时选择了,这就是需要具体问题,具体分析的部分。

二分是一个非常通用的办法,但是我们来考虑这样的一个问题,二分的时候我们只是用到了F(L)>0这个条件,而对于使得F(L)>0的这组解所求到的R值没有使用。因为F(L)>0,我们已经知道了R是一个更优的解,与其漫无目的的二分,为什么不将解移动到R上去呢?求01分数规划的另一个方法就是Dinkelbach算法,他就是基于这样的一个思想,他并不会去二分答案,而是先随便给定一个答案,然后根据更优的解不断移动答案,逼近最优解。由于他对每次判定使用的更加充分,所以它比二分会快上很多。但是,他的弊端就是需要保存这个解,而我们知道,有时候验证一个解和求得一个解的复杂度是不同的。二分和Dinkelbach算法写法都非常简单,各有长处,大家要根据题目谨慎使用。

以上证明方法引用与:http://music.573114.com/Blog/Html/103D/275536.html

我的代码如下:

 

#include <cstdio> 
#include <cstring> 
#include <cstdlib> 
#include <cmath> 
#include <ctime> 
#include <iostream> 
#include <algorithm>
#define maxn 100020
using namespace std;

const double inf=100000000.0;

int n,m;
double sorce[200][200],sumsorce=0;
double heng[200][200],shu[200][200];
int id[200][200];

int sum=0;

int s=0,t=0;

int tot=1;
int fir[maxn],en[maxn],nex[maxn];
double f[maxn];
inline void ins(int x,int y,double z1,double z2){
//	printf("%d %d %lf %lf\n",x,y,z1,z2);
	nex[++tot]=fir[x];
	fir[x]=tot;
	en[tot]=y;
	f[tot]=z1;
	
	nex[++tot]=fir[y];
	fir[y]=tot;
	en[tot]=x;
	f[tot]=z2;
}

inline void insert(double mid){
	
	memset(fir,0,sizeof(fir));
	memset(nex,0,sizeof(nex));
	memset(en,0,sizeof(en));
	for (int i=0;i<maxn;i++)
		f[i]=0;
	tot=1;
	
	for (int i=0;i<=n+1;i++)
		for (int j=0;j<=m+1;j++){
			if (!i || i == n + 1 || !j || j == m + 1)
                ins(id[i][j],t,inf,0);
            else
            	ins(s,id[i][j],sorce[i][j],0);
			}
    for (int  i=0; i <= n; ++i)
        for (int j = 1; j <= m; ++j)
            ins(id[i][j],id[i+1][j],mid*heng[i][j],mid*heng[i][j]);
    for (int i = 1; i <= n; ++i)
        for (int j = 0; j <= m; ++j)
            ins(id[i][j],id[i][j+1],mid*shu[i][j], mid*shu[i][j]);
}

double flog=0,his[maxn];
int now[maxn],pre[maxn],num[maxn],d[maxn];
inline void sap(){
    flog=0;
//    printf("<%lf>\n",flog);
    for (int i=0;i<=t;i++){
        now[i]=fir[i];
        his[i]=0;
        num[i]=d[i]=0;
        }
    num[0]=sum;
    int i=s;
    bool flag;
    double aug=inf;
    while (d[s]<sum){
        flag=false;
        his[i]=aug;
        for (int k=now[i];k;k=nex[k]){
            int j=en[k];
            if ((d[i]==d[j]+1)&&(f[k]>0)){
                now[i]=k;
                pre[j]=i;
                flag=true;
                if (aug>f[k]) aug=f[k];
                i=j;
                if (i==t){
                    flog+=aug;
                    while (i!=s){
                        i=pre[i];
                        f[now[i]]-=aug;
                        f[now[i]^1]+=aug;
                        }
                    aug=inf;
                    }
                break;
                }
            }
        if (flag) continue;
        int k1=0,minn=sum;
        for (int k=fir[i];k;k=nex[k])
            if (f[k]>0&&minn>d[en[k]]){
                minn=d[en[k]];
                k1=k;
                }
        --num[d[i]];
        if (num[d[i]]==0) return;
        d[i]=minn+1;
        ++num[d[i]];
        now[i]=k1;
        if (i!=s){
            i=pre[i];
            aug=his[i];
            }
        } 
//    printf("<%lf>\n",flog);
}

 

int main(){
	freopen("3232.in","r",stdin);
	freopen("3232.out","w",stdout);
	
	scanf("%d%d",&n,&m);
	for	(int i=1;i<=n;i++)
		for (int j=1;j<=m;j++){
			scanf("%lf",&sorce[i][j]);
			sumsorce+=sorce[i][j];
			}
	for (int i=0;i<=n+1;i++)
		for (int j=0;j<=m+1;j++)
			id[i][j]=s++;
	sum=t=s+1;
	
	for (int i=0;i<=n;i++)
		for (int j=1;j<=m;j++)
			scanf("%lf",&heng[i][j]);
	for (int i=1;i<=n;i++)
		for (int j=0;j<=m;j++)
			scanf("%lf",&shu[i][j]);
	
	
	double l=0,r=n*m*100,mid=0;
	while (r-l>1e-5){
		mid=(l+r)/2;
		insert(mid);
		sap();
//		printf("%lf %lf %lf\n",mid,flog,sumsorce);
		if (sumsorce-flog<1e-9&&flog-sumsorce>=-(1e-9)) r=mid;
			else l=mid;
		}
	printf("%.3lf",l);
	return 0;
}


 

 

posted on 2013-08-19 19:35  bbsno  阅读(246)  评论(0编辑  收藏  举报

导航