【笔记】一元函数的不定积分

基本积分公式

$\int 0dx=c$

$\int x{u}dx=\frac{x{u+1}}{u+1}+c$

$\int \frac{dx}{x}=ln|x|+c$

$\int a{x}dx=\frac{ax}{lna}+c$

$\int cosxdx=sinx+c$

$\int sinxdx=-cosx+c$

$\int sin^2xdx=\frac{1}{2}x-\frac{1}{4}sin2x+c$

$\int cos^2xdx=\frac{1}{2}x+\frac{1}{4}sin2x+c$

$\int tan^2xdx=tanx-x+c$

$\int cot^2xdx=-cotx-x+c$

$\int csc^2x dx=-cotx+c$

$\int sec^2x dx=tanx+c$

$\int secxtanx=secx+c$

$\int cscxcotx=-cscx+c$

$\int \frac{dx}{\sqrt{a2-x{2}}}=arcsin\frac{x}{a}+c$

$\int \frac{dx}{a2+x2}=\frac{1}{a}arctan\frac{x}{a}+c$

$\int \frac{1}{\sqrt{x^2\pm a2}}=lin(x+\sqrt{x2\pm a^2})+c$

$\int tanxdx=-ln|cosx|+c$

$\int cotxdx=ln|sinx|+c$

$\int secxdx=ln|secx+tacx|+c$

$\int cscxdx=ln|cscx+cotx|+c$

$\int arcsinxdx=xarcsinx+(1-x2){2}}+c$
$\int arctanxdx=\frac{1}{2}x^2arctanx+\frac{1}{2}arctanx-\frac{1}{2}x+c$
$\int ln|1+x|=(1+x)ln|1+x|-x+c$


三角恒等式

$sin2x+cos2=1$

$1+tan^2x=secx$

$1+cot^2x=cscx$

有理函数的不定积分

化部分分式法

  1. 对分式$\frac{Pn(x)}{(x-a)(x-b)(x-c)2(x-d)2}$应化为:

    $$\frac{Pn(x)}{(x-a)(x-b)(x-c)^2} =\frac{A}{x-a}+\frac{B}{x-b}+\frac{C_1}{x-c}+\frac{C_2}{(x-c)^2}$$

引理:
一个多项式不可因式分解的最高次为2
即任意多项式$ax3+bx2+cx+d$一定可以被分解为$(\lambda x+\mu)(x^2+px+q)$
但$(x^2+px+q)$不一定能被分解

  1. 对分式$\frac{Pn(x)}{(x-a)(x-b)(x2+px+q)2}$应化为:

    $$\frac{Pn(x)}{(x-a)(x-b)(x2+px+q)2} =\frac{A}{x-a}+\frac{B}{x-b}+\frac{C_1x+D_1}{x2+px+q}+\frac{C_2x+D_2}{(x2+px-q)^2}$$

之后对简单的分式直接求不定积分,对复杂的分式凑微分

Euler代换法

用$R(u,v)$表示关于$u,v$的有理函数

  1. 对于$R(x,\sqrt{x^2+px+q})$ ($x^2+px+q$不能再因式分解)
    通常用$t=x+\sqrt{x^2+px+q}$代换.

  2. 对于$R(x,\sqrt{x^2+px+q})$ ($x^2+px+q=(ax+b)(cx+d)$)
    通常用$t=\sqrt{\frac{ax+b}{cx+d}}$代换

三角代换

对于同时出现根号和$a2-x2$一类的式子时,采用三角代换:
$\sqrt{x2+a2}\rightarrow x=atant$

$\sqrt{x2-a2}\rightarrow x=asect$

$\sqrt{a2-x2}\rightarrow x=asint$

$\int \frac{dx}{a2+x2}=\frac{1}{a}arctan\frac{x}{a}+c$

$\int \frac{dx}{\sqrt{a2-x2}}=arcsin\frac{x}{a}+c$

例题

分部积分法

$eg.1 \int xe^xdx$

$
\begin{aligned}
原式 & = \int x de^x \\
& = xe^x-\int e^xdx \\
& = (x-1)e^x
\end{aligned}
$


$eg.2 \int e^xsinxdx$

$
\begin{aligned}
原式 & = \int sinx de^x \\
& = e^xsinx - \int e^xdsinx \\
& = e^xsinx - \int e^xcosxdx \\
& = e^xsinx - \int cosxde^x \\
& = e^xsinx - e^xcosx - \int e^xsinxdx \\
\end{aligned}
$

$$\Rightarrow 2\int exsinxdx=ex(sinx-cosx)+c$$

$$\Rightarrow \int exsinxdx=\frac{1}{2}ex(sinx-cosx)+c$$

此类题目最终化为$a=b+c-a\Rightarrow a=\frac{1}{2}b+c$的形式
注意在分部积分后及时套用第二换元法


$eg.3\int xlnxdx$

$
\begin{aligned}
原式 & = \int lnxd\frac{x^2}{2} \\
& = \frac{x^2}{2}lnx - \int \frac{x^2}{2}dlnx \\
& = \frac{x^2}{2}lnx - \int \frac{x^2}{2}\frac{1}{x}dx \\
& = \frac{x^2}{2}lnx - \int frac{x}{2}dx \\
& = \frac{x^2}{2}lnx - \frac{1}{4}x^2+c
\end{aligned}
$

分部积分的运用中可加入凑微分

凑微分的顺序:指数函数>三角函数>幂函数


$eg.4\int \sqrt{a2+x2}{\rm d}x$
$
\begin{aligned}
原式 & = x\sqrt{a2+x2} - \int \frac{x2}{\sqrt{a2+x^2}}{\rm d}x \\
& = x\sqrt{a2+x2} - \int \frac{x2+a2-a2}{\sqrt{a2+x^2}}{\rm d}x \\
& = x\sqrt{a2+x2} - \int \sqrt{a2+x2}{\rm d}x - a^2\int \frac{{\rm d}x}{\sqrt{a2+x2}} \\
& = x\sqrt{x2+a2} + a2ln|x+\sqrt{x2+a^2}| - \int \sqrt{a2+x2}{\rm d}x + c \\
\end{aligned}
$
$
\begin{aligned}
\Rightarrow 2\int x\sqrt{x2+a2} = x\sqrt{x2+a2} + a2ln|x+\sqrt{x2+a^2}|+c \\
\Rightarrow \int x\sqrt{x2+a2} = \frac{1}{2}x\sqrt{x2+a2} + \frac{1}{2}a2ln|x+\sqrt{x2+a^2}|+c
\end{aligned}
$

有理真分式与Eular代换

$eg.1\int \frac{x}{x^2-5x+6}{\rm d}x$
$
\begin{aligned}
原式 & = \int \frac{x}{(x-2)(x-3)}{\rm d}x \\
& = \int (\frac{A}{x-2} + \frac{B}{x-3}){\rm d}x \\
& \Rightarrow A(x-3)+B(x-2) = x \\
& \Rightarrow \begin{cases}
A = -2 \\
B = -3
\end{cases} \\
& = \int (\frac{-2}{x-2}+\frac{-3}{x-3}){\rm d}x \\
& = -2ln|x—2|+3ln|x-3|+c
\end{aligned}
$
$eg.2\int \frac{{\rm d}x}{x+\sqrt{x^2+x+1}}$
$令t=x+\sqrt{x^2+x+1}$
$\Rightarrow \begin{cases} x=\frac{t^2-1}{2t+1} \\
\sqrt{x^2+x+1}= \frac{t^2+t+1}{2t+1} \\
{\rm d}x=\frac{2(t2+t+1)}{(2t+1)2}{\rm d}t
\end{cases}
$
$
\begin{aligned}
原式 & = 2\int \frac{t2+t+1}{t(2t+1)2}{\rm d}t \\
& = \int (\frac{2}{t}-\frac{3}{2t+1}-\frac{3}{(2t+1)^2}){\rm d}x \\
& = lnt^2 - \frac{3}{2}ln|2t+1|+\frac{3}{2}\frac{1}{2t+1}+c \\
& = 2ln|x+\sqrt{x2+x+1}|-\frac{3}{2}ln|2x+2\sqrt{x2+x+1}+1|+\frac{3}{2(2x+2\sqrt{x^2+x+1}+1)}+c
\end{aligned}
$

自消型

$eg.1 \int e{2x}(tanx+1)2{\rm d}x$
$
\begin{aligned}
原式 & = \int e{2x}(tan2x+1+2tanx){\rm d}x \\
& = \int e{2x}(sec2x + 2tanx){\rm d}x \\
& = \int e^{2x}{\rm d}tanx + 2\int e^{2x} tanx {\rm d}x \\
& = e^{2x}tanx -\int tanx{\rm d}e^{2x} +2\int e^{2x}tanx{\rm d}x \\
& = e^{2x}tanx - 2\int tanxe^{2x}{\rm d}x + 2\int e^{2x}tanx{\rm d}x \\
& = e^{2x}tanx +c
\end{aligned}
$


$eg.2 习题3.2T4.20
\int \frac{x2ex}{(x+2)^2}{\rm d}x$
$
令 t = x+2 \Rightarrow \begin{cases} x^2 = (t-2)^2 \\ ex=e \end{cases}
$
$
\begin{aligned}
原式 & = e^{-2} \int \frac{t2-4t+4}{t2}e^t{\rm d}t \\
& = e^{-2}(\int e^t{\rm d}t-4\int \frac{1}{t}e^t{\rm d}t+\int \frac{4}{t2}et{\rm d}x) \\
& = e{-2}[et-\frac{4}{t}e^t+(-4)\int \frac{1}{t2}et{\rm d}x+\int \frac{4}{t2}et{\rm d}t] \\
& = e{-2}(et-\frac{4}{t}e^t)+c
\end{aligned}
$


$eg.3习题3.2T6.22
\int (x2+2x-1)e{x}}{\rm d}x$
$
\begin{aligned}
原式 & = \int (x2-1)e{x}}{\rm d}x + \int 2xe^{x+\frac{1}{x}}{\rm d}x \\
& = \int (x2-1)e{x}}{\rm d}x + \int e^{x+\frac{1}{x}}{\rm d}x^2 \\
& = \int (x2-1)e{x}}{\rm d}x + x2e{x}}-\int x^2{\rm d}e^{x+\frac{1}{x}} \\
& = \int (x2-1)e{x}}{\rm d}x + x2e{x}}-\int x2e{x}}\frac{x2-1}{x2}{\rm d}x \\
& =x2e{x}} +c
\end{aligned}
$

其他

$eg.1习题3.3T2.9
\int \frac{1}{sin4x+cos4x}{\rm d}x$
$
\begin{aligned}
原式 & = \int \frac{1}{(sin2x+cos2x)2-2sin2xcos^2x}{\rm d}x \\
& = \int \frac{{\rm d}x}{1-2sin2xcos2x} \\
& = \int \frac{{rm d}x}{1-\frac{1}{2}sin^22x} \\
& = \int \frac{{\rm d}x}{1-\frac{1}{2csc^22x}} \\
& = \int \frac{csc22x}{csc22x-\frac{1}{2}}{\rm d}x \\
& = \frac{1}{2}\int \frac{{\rm d}cot2x}{1+cot^22x-\frac{1}{2}} \\
& = \frac{1}{2}\int \frac{{\rm d}cot2x}{\frac{1}{2}+cot^22x} \\
& = \frac{\sqrt{2}}{2}arctan\sqrt{2}cotx+c
\end{aligned}
$


$eg.2\int \frac{3x+2}{x^2+x+1}{\rm d}x$
$
\begin{aligned}
原式 & = \int \frac{\frac{3}{2}(x2+x+1)'+\frac{1}{2}}{x2+x+1}{\rm d}x \\
& = \frac{3}{2}ln(x^2+x+1)+\frac{1}{2}\int \frac{1}{x^2+x+1}{\rm d}x+c \\
& = \frac{3}{2}ln(x^2+x+1)+\frac{1}{2}\int \frac{{\rm d}(x+\frac{1}{2})}{(x+\frac{1}{2})^2+\frac{3}{4}}+c \cdots \cdots \cdots \text{分母凑平方和,分子凑微分} \\
& = \frac{3}{2}ln(x^2+x+1)+\frac{1}{2}\times \frac{2}{\sqrt{3}}arctan\frac{2(x+\frac{1}{2})}{\sqrt{3}}+c
\end{aligned}
$

posted @ 2019-11-25 21:34  bbqub  阅读(2111)  评论(0编辑  收藏  举报