PYTHON中的CONCURRENT.FUTURES模块

一 : 概述

  concurrent.futures模块提供了高度封装的异步调用接口

  ThreadPoolExecutor:线程池,提供异步调用

  ProcessPoolExecutor: 进程池,提供异步调用

  两者都实现相同的接口,该接口由抽象执行器类定义。

二 : 基本方法

  submit(fn, *args, **kwargs) 异步提交任务

  map(func, *iterables, timeout=None, chunksize=1) 取代for循环submit的操作

  shutdown(wait=True) 相当于进程池的pool.close()+pool.join()操作, wait=True,等待池内所有任务执行完毕回收完资源后才继续 , wait=False,立即返回,并不会等待池内的任务执行完毕 , 但不管wait参数为何值,整个程序都会等到所有任务执行完毕 , submit和map必须在shutdown之前.

  result(timeout=None) 取得结果

  add_done_callback(fn) 添加回调函数 

 1 #介绍
 2 ProcessPoolExecutor类是一个Executor子类,它使用进程池异步执行调用。ProcessPoolExecutor使用多处理模块,这允许它绕过全局解释器锁,但也意味着只能执行和返回可拾取的对象。 
3
4 class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None) 5 一个Executor子类,使用最多包含max_workers进程的池异步执行调用。如果max_workers没有或没有给定,它将默认为机器上的处理器数量。如果max_workers小于或等于0,则会引发ValueError。 6 7 8 #用法 9 from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor 10 11 import os,time,random 12 def task(n): 13 print('%s is runing' %os.getpid()) 14 time.sleep(random.randint(1,3)) 15 return n**2 16 17 if __name__ == '__main__':
18 19 executor=ProcessPoolExecutor(max_workers=3) 20 21 futures=[] 22 for i in range(11): 23 future=executor.submit(task,i) 24 futures.append(future) 25 executor.shutdown(True) 26 print('+++>') 27 for future in futures: 28 print(future.result()) 29 30 ProcessPoolExecutor
#介绍
ThreadPoolExecutor是一个Executor子类,它使用线程池异步执行调用。
class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='')
一个Executor子类,它使用最多包含max_workers线程的池异步执行调用。

在3.5版中发生了更改:如果没有或没有指定max_workers,它将默认为机器上的处理器数量乘以5,假设ThreadPoolExecutor经常用于重叠I/O而不是CPU工作,并且Worker的数量应该高于ProcessPoolExecutor的工作人员数量。版本3.6中的新增功能:添加了thread_name_prefix参数,以允许用户控制线程。由池创建的工作线程的线程名称,以便于调试。

#用法
与ProcessPoolExecutor相同

ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

import os,time,random
def task(n):
    print('%s is runing' %os.getpid())
    time.sleep(random.randint(1,3))
    return n**2

if __name__ == '__main__':

    executor=ThreadPoolExecutor(max_workers=3)

    # for i in range(11):
    #     future=executor.submit(task,i)

    executor.map(task,range(1,12)) #map取代了for+submit

map的用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from multiprocessing import Pool
import requests
import json
import os

def get_page(url):
    print('<进程%s> get %s' %(os.getpid(),url))
    respone=requests.get(url)
    if respone.status_code == 200:
        return {'url':url,'text':respone.text}

def parse_page(res):
    res=res.result()
    print('<进程%s> parse %s' %(os.getpid(),res['url']))
    parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
    with open('db.txt','a') as f:
        f.write(parse_res)


if __name__ == '__main__':
    urls=[
        'https://www.baidu.com',
        'https://www.python.org',
        'https://www.openstack.org',
        'https://help.github.com/',
        'http://www.sina.com.cn/'
    ]

    # p=Pool(3)
    # for url in urls:
    #     p.apply_async(get_page,args=(url,),callback=pasrse_page)
    # p.close()
    # p.join()

    p=ProcessPoolExecutor(3)
    for url in urls:
        p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果

回调函数

转载至:https://www.cnblogs.com/DoingBe/p/9545066.html

posted @ 2022-04-16 21:47  霍非  阅读(659)  评论(0编辑  收藏  举报