Codeforces 396B:On Sum of Fractions
Codeforces 396B:On Sum of Fractions
题目链接:http://codeforces.com/problemset/problem/396/B
题目大意:共$t$组数据,每组给出一个数$n$,求$sum_{i=2}^n{\frac{1}{v(i) \times u(i)}}$。其中$v(i)$为不大于$i$的最大质数,$u(i)$为大于$i$的最小质数。
数学
设$p_k$为第$k$个质数,数列$a_i=\frac{1}{v(i) \times u(i)}$,
可以发现当$p_k \leqslant i \leqslant p_{k+1}$时,$a_i$的值均相同;
将这些相同的项合并,形成一个新的数列$b_i=\frac{p_{i+1}-p_i}{p_i \times p_{i+1}}$.
若我们快速求得$S_n=sum_{i=1}^nb_i$,那么题目所要求的的值也就可以快速得到.
打表得到$S_n$的前几项:
$S_1=\frac{1}{2 \times 3},S_2=\frac{3}{2 \times 5},S_3=\frac{5}{2 \times 7},S_4=\frac{9}{2 \times 11},S_5=\frac{11}{2 \times 13}$
猜想$S_i=\frac{p_{i+1}-2}{2 \times p_{i+1}}$.
设$S_k=\frac{p_{k+1}-2}{2 \times p_{k+1}}$,则
$$
\begin{align}
S_{k+1}
&=S_k+b_{k+1}\\
&=\frac{p_{k+1}-2}{2 \times p_{k+1}}+\frac{p_{k+2} - p_{k+1}}{p_{k+1} \times p_{k+2}}\\
&=\frac{p_{k+2} \times (p_{k+1}-2)+2 \times (p_{k+2}-p_{k+1})}{2 \times p_{k+1} \times p_{k+2}}\\
&=\frac{p_{k+1} \times (p_{k+2}-2)}{2 \times p_{k+1} \times p_{k+2}}\\
&=\frac{p_{k+2}-2}{2 \times p_{k+2}}\\
\end{align}
$$
故猜想正确.(亦可以从$b_i=\frac{p_{i+1}-p_i}{p_i \times p_{i+1}}=\frac{1}{p_i}-\frac{1}{p_{i+1}}$得到)
而题目所要求的$sum_{i=2}^n\frac{1}{v(i) \times u(i)}$,即为$S_k-\frac{u-1-n}{v(i) \times u(i)}$,其中$u$为第$k$个质数。
代码如下:
1 #include <iostream> 2 using namespace std; 3 typedef long long ll; 4 ll T,n,v,u; 5 bool prime(ll n){ 6 for(ll i=2;i*i<=n;++i) 7 if(n%i==0)return 0; 8 return 1; 9 } 10 ll gcd(ll a,ll b){ 11 return b?gcd(b,a%b):a; 12 } 13 struct fraction{ 14 ll p,q; 15 fraction(ll _p=1,ll _q=1){ 16 p=_p;q=_q; 17 } 18 friend fraction operator - (fraction a,fraction b){ 19 fraction c; 20 ll tmp=gcd(a.q,b.q); 21 c.p=b.q/tmp*a.p-a.q/tmp*b.p; 22 c.q=a.q/tmp*b.q; 23 tmp=gcd(c.p,c.q); 24 c.p/=tmp;c.q/=tmp; 25 return c; 26 } 27 }a,b; 28 int main(void){ 29 std::ios::sync_with_stdio(false); 30 cin>>T; 31 while(T--){ 32 cin>>n; 33 v=n;u=n+1; 34 while(!prime(v))v--; 35 while(!prime(u))u++; 36 a=fraction(u-2,2*u); 37 b=fraction(u-1-n,v*u); 38 a=a-b; 39 cout<<a.p<<"/"<<a.q<<endl; 40 } 41 }