The most orzed and orzing man

The most orzed and orzing man

题目链接:http://acm.xidian.edu.cn/problem.php?id=1184

Sprague-Grundy定理:https://zhuanlan.zhihu.com/p/20611132#!

博弈论 SG函数

看到这题一脸懵逼啊,看了一下午才弄明白,是这五题最难的(但是为什么这么多人过,不科学啊)= =

Sprague-Grundy定理大致讲了这样一个东西:

对于一个满足条件的独立博弈游戏,有着必败态和必胜态,我们只需要知道当前状态是不是必胜态,就可以知道会不会赢。然而多个多个博弈游戏组成的博弈集群游戏,只知道各个游戏是否为必胜态是不行的(必胜态数大于1时,有可能胜,有可能败),因此就需要计算SG值:

对于一个必胜态,如果它只能转移到必败态,那么将其定义为一级必胜态;

如果它能转移到一级必胜态或必败态,那么将其定义为二级必胜态;

如果它能转移到一级到k级必胜态或必败态,那么将其定义为k+1级必胜态。

而多个游戏的总状态就是当前各个游戏的状态级数(必败态为零级状态)的异或值(详细证明见上面的链接)。

对于这题的单个游戏来说,当a[i]%3=0时,为必败态(零级状态),当a[i]%3=1时为一级必胜态,当a[i]%3=2时为二级必胜态,所以整个游戏群的状态为各个状态级数的异或值。

然后发现一个多星期前的cf好像有类似的博弈题 是道B题 当时游少直接跟我说怎么写 后来也没问...惭愧= =

代码如下:

 1 #include<cstdio>
 2 using namespace std;
 3 int n,t;
 4 int main(void){
 5     while(~scanf("%d",&n)){
 6         int ans;
 7         scanf("%d",&ans);
 8         ans%=3;
 9         for(int i=1;i<n;++i){
10             scanf("%d",&t);
11             t%=3;
12             ans^=t;
13         }
14         if(ans)printf("Yes\n");
15         else printf("No\n");
16     }
17 }

 

posted @ 2016-08-24 19:44  barriery  阅读(173)  评论(0编辑  收藏  举报